Skip to main content

Beckwith-Wiedemann Syndrome, Tumorigenesis and Imprinting

  • Conference paper
  • 85 Accesses

Abstract

The Beckwith-Wiedemann syndrome (BWS) occurs with an incidence of 1 in 13 700 live births and is characterized by numerous growth abnormalities, including exomphalos, macroglossia, visceromegaly and gigantism. These features show variable expression and can be found in association with multiple abnormalities including neonatal hypoglycemia, ear lobe creases and pits, and hemihypertrophy. The clinical findings in BWS patients are highly variable, tending to become less distinctive with age. The syndrome may therefore be underdiagnosed in adults. An increased incidence (7.5%) of different types of childhood tumors is observed, including the following tumors: Wilms’ tumor (59%), adrenocortical carcinoma (15%) and a few instances of hepatoblastoma, rhabdomyosarcoma and neuroblastoma (Wiedemann 1983). Hemihypertrophy, nephrogenic rest, Wilms’ tumor and BWS commonly occur together.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartolomei MS, Zemel S, Tilghman S (1991) Parental imprinting of the mouse H19 gene. Nature 351: 153–155

    Article  PubMed  CAS  Google Scholar 

  • Cavenee WK, Dryja P, Phillips et al. (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305: 779–784

    Article  PubMed  CAS  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadias A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64: 849–859

    Article  PubMed  CAS  Google Scholar 

  • Fearon ER, Feinberg AP, Hamilton SH et al. (1985) Loss of genes on the short arm of chromosome 11 in bladder cancer. Nature 381: 377–380

    Article  Google Scholar 

  • Ferguson-Smith AC, Cattanach BM, Barton SC et al. (1991) Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351: 667–670

    Article  PubMed  CAS  Google Scholar 

  • Francke U, Holmes LB, Atkins L et al. (1979) Aniridia-Wilms’ tumor association: evidence for specific deletion of 11p13. Cytogenet Cell Genet 24: 185–192

    Article  PubMed  CAS  Google Scholar 

  • Grundy P, Koufos A, Morgan K et al. (1988) Familial predisposition to Wilms’ tumor does not map to the short arm of chromosome 11. Nature 336: 374–376

    Article  PubMed  CAS  Google Scholar 

  • Grundy P, Telzerw P, Peterson MC, Haber D, Herman B, Li F, Garber L (1991) Chromosome 11 uniparental isodisomy predisposition to embryonal neoplasms. Lancet 338: 1079–1080

    Article  PubMed  CAS  Google Scholar 

  • Henry I, Grandjouan S, Couillin P et al. (1989) Tumor-specific loss of 11p15.5 alleles in del11p13 Wilms’ tumor and in familial adrenocortical carcinoma. Proc Natl Acad Sci USA 86: 3247–3251

    Article  PubMed  CAS  Google Scholar 

  • Henry I, Bonaïti-Pellié C, Chehensse V et al. (1991) Uniparental paternal disomy in sporadic Beckwith-Wiedemann syndrome with Wilms’ tumor suggests genomic imprinting. Nature 351: 665–667

    Article  PubMed  CAS  Google Scholar 

  • Huff V, Compton DA, Chao LY et al. (1988) Lack of linkage of familial Wilms’ tumor to chromosomol band 11p13. Nature 336: 377–378

    Article  PubMed  CAS  Google Scholar 

  • Junien C (1986) Les antioncogènes. Médecine/Science 2: 238–254

    Google Scholar 

  • Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 4: 820–823

    Article  Google Scholar 

  • Koufos A, Hansen MF, Lampkin BC et al. (1984) Loss of alleles at loci on human chromosome 11 during genesis of Wilms’ tumor. Nature 309: 170–172

    Article  PubMed  CAS  Google Scholar 

  • Koufos A, Grundy P, Morgan K et al. (1989) Familial Wiedemann-Beckwith syndrome and a second Wilms’ tumor locus both map to 11p15.5. Am J Hum Genet 44: 711–719

    PubMed  CAS  Google Scholar 

  • Lothe RA, Fossa SD, Stenwig AE (1989) Loss of 3p or I 1p alleles is associated with testicular cancer tumors. Genomics 5: 134–138

    Article  PubMed  CAS  Google Scholar 

  • Mannens M, Slater RM, Heyting C et al. (1988) Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms’ tumor. Hum Genet 81: 41–48

    Article  PubMed  CAS  Google Scholar 

  • Moutou C, Junien C, Henry I et al. (1992) A demonstration of the mechanisms responsible for the excess of transmitting females. J Med Genet (in press)

    Google Scholar 

  • Pelletier J, Bruening W, Kashtan CE, Mauer SM, Manivel JC, Striegel JE, Houghton DC, Junien C, Habib R, Fouser L, Fine RN, Silverman BL, Haber DA, Housman D (1991) Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67: 437–447

    Article  PubMed  CAS  Google Scholar 

  • Scrable HJ, Witte DP, Lampkin BC et al. (1987) Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature 329: 645–647

    Article  PubMed  CAS  Google Scholar 

  • Scrable HJ, Cavenee W, Ghavimi F et al. (1989) A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc Natl Acad Sci USA 86: 7480–7484

    Article  PubMed  CAS  Google Scholar 

  • Turleau C, de Grouchy J (1985) Beckwith-Wiedemann syndrome: clinical comparison between patients with and without 11p15 trisomy. Ann Genet 28: 93–96

    PubMed  CAS  Google Scholar 

  • Wang-Wuu S, Soukup S, Bove K et al. (1990) Chromosome analysis of 31 Wilms’ tumor. Cancer Res 50: 2786–2793

    Google Scholar 

  • Wiedemann HR (1983) Tumors and hemihypertrophy associated with Wiedemann-Beckwith syndrome. Eur J Pediatr 12 414–129

    Google Scholar 

  • Zbar B, Brauch H, Talmadge C et al. (1987) Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327: 721–724

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Junien, C. (1992). Beckwith-Wiedemann Syndrome, Tumorigenesis and Imprinting. In: Bannasch, P. (eds) Cancer Diagnosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76899-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76899-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54503-3

  • Online ISBN: 978-3-642-76899-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics