Skip to main content

The Movement of Vitamins Into the Brain

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 103))

Abstract

The brain needs all of the vitamins, with the possible exception of K and D, a need emphasised by the neurological disturbances associated with deficiencies of almost any of the B-group vitamins. How they move into the brain is thus of some importance. There are different possible routes and various mechanisms by which vitamins cross various barriers between the blood and brain cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Algeri A, Consolazione A, Colderini G, Achilli G, Canas EP, Garattini S (1979) Effect of administration of [d-ala] methionine-enkephalin on the serotonin metabolism in rat brain. Experientia 34:1488–1489

    Article  Google Scholar 

  • Allan RJ, DiMauro S, Coulter DL, Papadimitriou A, Rothenburg SP (1983) Kearns-Sayre syndrome with reduced plasma and cerebrospinal fluid folate. Ann Neurol 13:679–682

    Article  Google Scholar 

  • Bartus RT, Dean RL, Sherman KA, Friedman F, Beer B (1982) Profound effects of combining choline and piracetam on memory enhancement and cholinergic function in aged rats. Neurobiol Ageing 2:105–111

    Article  Google Scholar 

  • Bhatt H, Daniel PM, Linneil JC, Love ER, Pratt OE (1980) The influx of cyancobalamin into the brain of the rat, in vivo. J Physiol (Lond) 308:88P

    Google Scholar 

  • Bradbury WB (1979) The concept of the blood-brain barrier. Wiley, Chichester

    Google Scholar 

  • Corcino JJ, Waxman S, Herbert, V (1970) Absorption and malabsorption of vitamin B-12. Am J Med 48:562–569

    Article  PubMed  CAS  Google Scholar 

  • Cornford EM, Oldendorf WH (1975) Independent blood-brain barrier transport systems for nucleic acid precursors. Biochem Bio Phys Acta 394(2):211–219

    Article  CAS  Google Scholar 

  • Deane BR, Greenwood J, Lantos PL, Pratt OE (1984) The vasculature of experimental brain tumours: part 4. The quantification of vascular permeability. J Neurol Sci 65:59–68

    Article  CAS  Google Scholar 

  • Dougados M, Zittoun J, Laplane D, Castaigne P (1983) Folate metabolism disorder in Kearns-Sayre syndrome. Ann Neurol 13:687

    Article  PubMed  CAS  Google Scholar 

  • Edwin EE, Jackman R (1973) Ruminal thiaminase and tissue thiamine in cerebrocortical necrosis. Vet Ree 92:640–641

    Article  CAS  Google Scholar 

  • Graul EH, Ruether W, Kovacs G (1967) Der Einfluß von Thiamintetrahydrofurfuryldisulfid auf das Strahlensyndrom. Münch Med Wochenschr 109:2192–2197

    PubMed  CAS  Google Scholar 

  • Greenwood J, Pratt OE (1983) Inhibition of thiamine transport across the blood-brain barrier in the rat by a chemical analogue of the vitamin. J Physiol (Lond) 336:479–486

    CAS  Google Scholar 

  • Greenwood J, Pratt OE (1984) The effect of ethanol upon thiamine transport across the blood-brain barrier in the rat. J Physiol (Lond) 348:6IP

    Google Scholar 

  • Greenwood J, Pratt OE (1985) Comparison of the effects of some thiamine analogues upon thiamine transport across the blood-brain barrier of the rat. J Physiol (Lond) 369:79–91

    Google Scholar 

  • Greenwood J, Love ER, Pratt OE (1982) Kinetics of thiamine transport across the blood-brain barrier in the rat. J Physiol (Lond) 327:95–103

    CAS  Google Scholar 

  • Greenwood J, Love ER, Pratt OE (1983) The effects of alcohol or of thiamine deficiency upon reproductionin the female rat and fetal development. Alcohol Alcoholism 18:45–51

    CAS  Google Scholar 

  • Greenwood J, Pratt OE, Thomson AD (1985) Thiamine, malnutrition and alcohol-related damage to the central nervous system. In: Parvez S, Burvo Y, Parvez M, Burns E (eds) Progress in alcohol research, vol 1. VNU Science, Utrecht, pp 287–310

    Google Scholar 

  • Hall CA (1973) Congenital disorders of vitamin B12 transport and their contribution to concepts. Gastroenterology 65:684–686

    PubMed  CAS  Google Scholar 

  • Hall CA (1975) Transcobalamins I and II as natural transport proteins of vitamin B12.J Clin Invest 56:1125–1131

    CAS  Google Scholar 

  • Hammerstrom L (1966) Autoradiographic studies on the distribution of C14-labelled ascorbic acid and dehydroascorbic acid. Acta Physiol Scand Suppl 289:1–70

    Article  Google Scholar 

  • Hilker DM, Somogyi JC (1982) Antithiamines of plant origin: their chemical nature and mode of action. Ann NY Acad Sci 378:137–144

    Article  PubMed  CAS  Google Scholar 

  • Horne DW, Briggs WT, Wagner C (1978) Transport of 5-methyltetrahydrofolic acid and folic acid in freshly isolated hepatocytes. J Biol Chem 253:3529–3535

    PubMed  CAS  Google Scholar 

  • Hoyumpa AM, Strickland R, Sheehan JJ, Yarborough G, Nichols S (1982) Dual system of intestinal thiamine transport in humans. J Lab Clin Med 99:701–708

    PubMed  CAS  Google Scholar 

  • Lam DK, Daniel PM (1986) The influx of ascorbic acid into the rat’s brain. Q J Exp Physiol 71:483–489

    PubMed  CAS  Google Scholar 

  • Lanzkowsky MD (1970) Congenital malabsorption of folate. Am J Med 48:580–583

    Article  PubMed  CAS  Google Scholar 

  • Lanzkowsky P, Erlandson ME, Bezan AI (1969) Isolated defect of folic acid absorption associated with mental retardation and cerebral calcification. Blood 34:452–465

    PubMed  CAS  Google Scholar 

  • Lever EG, Elwes RD, Williams A, Reynolds EI (1986) Subacute combined degeneration of the cord due to folate deficiency; response to methyl folate treatment. J Neurol Neurosurgery Psychiatry 49(10): 1203–1207

    Article  CAS  Google Scholar 

  • Levin VA, Freeman-Dove M, Landahl HD (1975) Permeability chacteristics of brain adjacent to tumours in rats, Arch Neurol 32:785–791

    PubMed  CAS  Google Scholar 

  • Levitt M, Nixon PF, Pincus JL, Bertino JR (1971) Transport characteristics of folates in cerebrospinal fluid: a study utilizing doule labelled 5-methyl tetrohydrofolate and 5-formyltetrohydrofolate. J Clin Invest 50:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Makulu DR, Smith EF, Bertino JR (1973) Lack of dihydrofolate reuctase activity in brain tissue of mammalian species: possible implications. J Neurochem 21:241–245

    Article  PubMed  CAS  Google Scholar 

  • Morgan MY (1981) Enteral nutrition in chronic liver disease. Acta Chir Scand Suppl 507:81–90

    PubMed  CAS  Google Scholar 

  • Oldendorf WH, Braun LD (1976) [3H]-tryptamine and 3H water as diffusible internal standards for measuring brain extraction of radio-labelled substances following carotid injection. Brain Res 113:219–224

    Google Scholar 

  • Pardridge WM (1984) Transport of nutrients and hormones through the blood-brain barrier. Fed Proc 43:201–204

    PubMed  CAS  Google Scholar 

  • Pratt OE (1979a) Adequate nutrition of the developing brain. In: Korobkin R, Guilleminault C (eds) Advances in perinatal neurology I. Spectrum, New York p 23

    Google Scholar 

  • Pratt OE (1979b) Kinetics of tryptophan transport across the blood-brain barrier.J Neurol Transm [Suppl] 15:29–42

    CAS  Google Scholar 

  • Pratt OE (1985) Continuous injection methods for the measurement of flux across the blood-brain barrier: the steady-state, initial-rate method. In: Marks N, Rodnight R (eds) Research methods in neurochemistry, vol 6. Plenum, New York, pp 117–150

    Google Scholar 

  • Raichle ME (1983) Neurogenic control of blood-brain barrier permeability, Acta Neuropathol [Suppl] (Berl) 8:75–79

    Article  CAS  Google Scholar 

  • Reggiani C, Patrini C, Rindi G (1984) Nervous tissue thiamine metabolism in vivo: I transport of thiamine and thiamine monophosphate from plasma to different brain regions of the rat. Brain Res 293:319–327

    Article  PubMed  CAS  Google Scholar 

  • Reynolds EH, Gallagher BB, Mattson RH, Bowers M, Johnson AL (1972) Relationship between serum and cerebrospinal fluid folate. Nature 240:155–157

    Article  PubMed  CAS  Google Scholar 

  • Rindi G, Patrini C, Comincioli V, Reggiani C (1980) Thiamine content and turnover rates of some rat nervous regions, using labelled thiamine as a tracer. Brain Res 181:369–380

    Article  PubMed  CAS  Google Scholar 

  • Spector R (1976) Thiamine transport in the central nervous system. Am J Physiol 230:1101–1107

    PubMed  CAS  Google Scholar 

  • Spector R (1978a) Vitamin B6 transport in the central nervous system: in vivo studies. J Neurochem 30:881–887

    Article  PubMed  CAS  Google Scholar 

  • Spector R (1978b) Vitamin B6 transport in the central nervous system: in vitro studies. J Neurochem 30:889–897

    Article  PubMed  CAS  Google Scholar 

  • Spector R (1980) Riboflavin homeostasis in the central nervous system. J Neurochem 35:202–209

    Article  PubMed  CAS  Google Scholar 

  • Spector R (1981) Penetration of ascorbic acid from cerebrospinal fluid into brain.Exp Neurol 72:645–653

    Article  PubMed  CAS  Google Scholar 

  • Spector R (1982) Thiamine homeostasis in the central nervous system. Ann NY Acad Sci 378:344–353

    Article  PubMed  CAS  Google Scholar 

  • Spector R (1985) Uridine transport and metabolism in the central nervous system. J Neurochem 45:1411–1418

    Article  PubMed  CAS  Google Scholar 

  • Spector R (1986) Pantothenic acid transport and metabolism in the central nervous system. Am J Physiol 19:R292–297

    Google Scholar 

  • Spector R, Lorenzo AV (1973) Ascorbic acid homeostasis in the central nervous system. Am J Physiol 225:757–763

    PubMed  CAS  Google Scholar 

  • Spector R, Lorenzo AV (1975a) Folate transport by the choroid plexus in vitro. Science 187:540–542

    Article  PubMed  CAS  Google Scholar 

  • Spector R, Lorenzo AV (1975b) Folate transport in the central nervous system. Am J Physiol 299:777–782

    Google Scholar 

  • Spector R, Greenwald LL (1978) Transport and metabolism of vitamin B6 in rabbit-brain and choroid plexus. J Biol Chem 253(7):2373–2379

    PubMed  CAS  Google Scholar 

  • Thomson AD, Frank H, Levy CM (1971) Thiamine propyl disulphide: absorption and utilisation. Ann Intern Med 74:529–534

    PubMed  CAS  Google Scholar 

  • Thomson AD, Ryte DR, Shaw GK (1982) Ethaniol, thiamine and brain damage. Alcohol 18:27–43

    Google Scholar 

  • Waxman S, Corcino JJ, Herbert V (1970) Drugs, toxins and dietary amino acids affecting vitamin B-12 or folic acid absorption or utilization. Am J Med 48:599–608

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pratt, O.E. (1992). The Movement of Vitamins Into the Brain. In: Bradbury, M.W.B. (eds) Physiology and Pharmacology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76894-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76894-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76896-5

  • Online ISBN: 978-3-642-76894-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics