Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 103))

Abstract

Transport of amino acids is very important for brain function as some of them are the precursors of neurotransmitters (serotonin, catecholamines, histamine) and of small polypeptides, and they participate in protein synthesis which is very active in some areas of the brain. The physiology of the endothelial cells responsible of the blood-brain barrier (BBB) has been compared to that of an epithelium (Betz and Goldstein 1978; Bradbury 1984; Fenstermacher and Rapoport 1984; Crone 1985). This means that the transport systems at the luminal membrane may be different to those at the abluminal membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AIB:

α-amino-isobutyric acid

AMPc:

cyclic adenosine Monophosphate

ASC:

alanine, serine, cysteine

ATP:

adenosine triphosphate

BBB:

blood-brain barrier

BCAA:

branched chain amino acids

BCH:

2-aminobicyclo-2,2,1-heptane-2-carboxylic acid

BUI:

brain uptake index

CBF:

cerebral blood flow

CSF:

cerebrospinal fluid

DOPA:

dihydroxyphenylalanine

GABA:

γ-aminobutyric acid

γ-GT:

γglutamyltranspeptidase

HTP:

hydroxytryptophan

LNAA:

large neutral amino acids

MeAIB:

methyl-α-aminoisobutyric acid

PCA:

portacaval anastomosis

References

  • Acworth IN, During MJ, Wurtman RJ (1988) Processes that couple amino acid availability to neurotransmitter synthesis and release. In: Huether (ed) Amino acid availability and brain function in health and disease. Springer, Berlin Heidelberg New York (NATO ASI Series, vol H20)

    Google Scholar 

  • Aschner M, Clarkson TW (1988) Uptake of methylmercury in the rat brain: effects of amino acids. Brain Res 462:31–39

    CAS  PubMed  Google Scholar 

  • Audus KT, Borchardt RT (1986) Characteristics of the large neutral amino acid transport system of bovine brain micro vessel endothelial cell monolayers. J Neurochem 47:484–488

    CAS  PubMed  Google Scholar 

  • Azorin JM, Bovier Ph, Widmer J, Jeanningros R, Tissot R (1990) L-Tyrosine and L- tryptophan membrane transport in erythrocytes and antidepressant drug choice. Biol Phychiatry 27:723–734

    CAS  Google Scholar 

  • Baca GM, Palmer GC (1978) Presence of hormonally-sensitive adenylate cyclase receptors in capillary-enriched fractions from rat cerebral cortex. Blood Vessels 15:286–298

    CAS  PubMed  Google Scholar 

  • Baños G, Daniel PM, Moorhouse SR, Pratt OE (1973) The influx of amino acids into the brain of the rat in vivo: the essential compared with some non-essential amino acids. Proc R Soc Lond B 183:59–70

    PubMed  Google Scholar 

  • Baños G, Daniel PM, Pratt OE (1974) Saturation of a shared mechanism which transports L-arginine and L-lysine into the brain of the living rat. J Physiol (Lond) 236:29–41

    Google Scholar 

  • Baños G, Daniel PM, Pratt OE (1978) The effect of age upon the entry of some amino acids into the brain, and their incorporation into cerebral protein. Dev Med Child Neurol 20:335–346

    PubMed  Google Scholar 

  • Bär Th, Wolff JR (1973) On the vascularization of the rat’s cerebral cortex. Bibl Anat 11:515–519

    PubMed  Google Scholar 

  • Bernafdini P, Fischer JE (1982) Amino acid imbalance and hepatic encephalopathy. Annu Rev Nutr 2:419–454

    Google Scholar 

  • Berteloot A, Bennetts RW, Ramaswamy K (1980) Transport characteristics of papain-treated brush-border membrane vesicles. Non-involvement of y- glutamyltransferase in leucine transport. Biochim Biophys Acta 601:592–604

    CAS  PubMed  Google Scholar 

  • Bertler A, Falck B, Rosengren E (1963) The direct demonstration of a barrier mechanism in the brain capillaries. Acta Pharmacol Toxicol 20:317–321

    CAS  Google Scholar 

  • Betz AL, Gilboe DD (1973) Effect of pentobarbital on amino acid and urea flux in the isolated dog brain. Am J Physiol 224:580–587

    CAS  PubMed  Google Scholar 

  • Betz AL, Goldstein GW (1978) Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science 202:225–227

    CAS  PubMed  Google Scholar 

  • Betz AL, Goldstein GW (1981) Developmental changes in metabolism and transport properties of capillaries isolated from rat brain. J Physiol (Lond) 312:365–376

    CAS  Google Scholar 

  • Betz AL, Gilboe DD, Drewes LR (1975) Kinetics of unidirectional leucine transport into brain: effects of isoleucine, valine, and anoxia. Am J Physiol 228:895–900

    CAS  PubMed  Google Scholar 

  • Bito L, Davson H, Levin E, Murray M, Snider N (1966) The concentrations of amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma in the dog. J Neurochem 13:1057–1067

    CAS  PubMed  Google Scholar 

  • Blasberg RG, Fenstermacher JD, Patlak CS (1983) Transport of a-aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8–32

    CAS  PubMed  Google Scholar 

  • Bradbury MWB (1984) The structure and function of the blood-brain barrier. Fed Proc 43:186–190

    CAS  PubMed  Google Scholar 

  • Brendel K, Meezan E, Carlson EC (1974) Isolated brain microvessels: a purified, metabolically active preparation from bovine cerebral cortex. Science 185:953–955

    CAS  PubMed  Google Scholar 

  • Brenton DP, Cardiner RM (1988) Transport of L-phenylalanine and related amino acids at the ovine blood-brain barrier. J Physiol (Lond) 402:497–514

    CAS  Google Scholar 

  • Brosnan JT, Forsey RGP, Brosnan ME (1984) Uptake of tyrosine and leucine in vivo by brain of diabetic and control rats. Am J Physiol 247:C450-C453

    CAS  PubMed  Google Scholar 

  • Brust P (1986) Changes in regional blood-brain transfer of L-leucine elicited by arginine-vasopressin. J Neurochem 46:534–541

    CAS  PubMed  Google Scholar 

  • Bustany P, Sargent T, Saudubray JM, Henry JF, Comar D (1981) Regional brain uptake and protein incorporation of 11C-L-methionine studied in vivo with PET. J Cereb Blood Flow Metab 1 (Suppl 1):S17-S18

    Google Scholar 

  • Butterworth RF, Giguere JF, Michaud J, Lavoie J, Pomier Layrargues G (1987) Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol 6:1–12

    CAS  PubMed  Google Scholar 

  • Butterworth RF, Girard G, Giguere JF (1988) Regional differences in the capacity for ammonia removal by brain following portocaval anastomosis. J Neurochem 51:486–490

    CAS  PubMed  Google Scholar 

  • Cancilla PA, DeBault LE (1983) Neutral amino acid transport properties of cerebral endothelial cells in vitro. J Neuropathol Exp Neurol 42:191–199

    CAS  PubMed  Google Scholar 

  • Cangiano C, Cardelli-Cangiano P, James JH, Rossi Fanelli F, Patrizi MA, Brackett KA, Strom R, Fischer JE (1983) Brain microvessels take up large neutral amino acids in exchange for glutamine. J Biol Chem 258:8949–8954

    CAS  PubMed  Google Scholar 

  • Cangiano C, Cardelli-Cangiano P, Cascino A, Patrizi MA (1983) On the stimulation by insulin of tryptophan transport across the blood-brain barrier. Biochem Intern 7:617–627

    CAS  Google Scholar 

  • Cangiano C, Cardelli-Cangiano P, Cascino A, Ceci F, Fiori A, Mulieri M, Muscaritoli M, Barberini C, Strom R, Rossi Fanelli F (1988) Uptake of amino acids by brain microvessels isolated from rats with experimental chronic renal failure. J Neurochem 51:1675–1681

    CAS  PubMed  Google Scholar 

  • Cardelli-Cangiano P, Cangiano C, James JH, Ceci F, Fischer JE, Strom R (1984) Effect of ammonia on amino acid uptake by brain microvessels. J Biol Chem 259:5295–530

    CAS  PubMed  Google Scholar 

  • Carutbers JS, Lorenzo AV (1974) In vitro studies on the uptake and incorporation of natural amino acids in rabbit choroid plexus. Brain Res 73:35–50

    Google Scholar 

  • Christensen HN (1964) Relations in the transport of P-alanine and the a-amino acids in the Earlich cell. J Biol Chem 239:3584–3589.

    CAS  PubMed  Google Scholar 

  • Christensen HN (1984) Organic ion transport during seven decades. The amino acids. Biochim Biophys Acta 779:255–269

    CAS  PubMed  Google Scholar 

  • Christensen HN (1985) On the strategy of kinetic discrimination of amino acid transport systems. J Membrane Biol 84:97–103

    CAS  Google Scholar 

  • Christensen HN, Liang M, Archer EG (1967) A distinct Na-requiring transport system for alanine, serine, cysteine and similar amino acids. J Biol Chem 242:5237–5246

    CAS  PubMed  Google Scholar 

  • Coben LA, Cotlier E, Beaty C, Becker B (1971) Transport of amino acids by rabbit choroid plexus in vitro. Brain Res 30:67–82

    CAS  PubMed  Google Scholar 

  • Collarini EJ, Oxender DL (1987) Mechanisms of transport of amino acids across membranes. Annu Rev Nutr 7:75–90

    CAS  PubMed  Google Scholar 

  • Comar D, Cartron JC, Maziere M, Marazano C (1976) Labeling and metabolism of methionine-methyl-11C. Eur J Nucl Med 1:11–14

    CAS  PubMed  Google Scholar 

  • Cornford EM, Cornford ME (1986) Nutrient transport and the blood-brain barrier in developing animals. Fed Proc 45:2065–2072

    CAS  PubMed  Google Scholar 

  • Cornford EM, Braun LD, Oldendorf WH (1982) Developmental modulations of blood-brain barrier permeability as an indicator of changing nutritional requirements in the brain. Pediatr Res 16:324–328

    CAS  PubMed  Google Scholar 

  • Craigie EH (1920) On the relative vascularity of various parts of the central nervous system of the albino rat. J Comp Neurol 31:429–464

    Google Scholar 

  • Crandall EA, Fernstrom JD (1983) Effect of experimental diabetes on the levels of aromatic and branched-chain amino acids in rat blood and brain. Diabetes 32:222–230

    CAS  PubMed  Google Scholar 

  • Crone C (1985) The blood-brain barrier: a modified tight epithelium. In: Bradbury, Rumsby, Suckling (eds) The blood-brain barrier in health and disease. Ellis Horwood, Chichester. Chapter 1:17–40

    Google Scholar 

  • Culvenor AJ, Jarrott B (1981) Comparison of P-adrenoreceptors in bovine intracerebral micro vessels and cerebral gray matter by [3H]dihydroalprenolol binding. Neuroscience 6:1383–1388

    Google Scholar 

  • Cutler RWP (1970) Transport of lysine from cerebrospinal fluid of the cat. J Neurochem 17:1017–1027

    CAS  PubMed  Google Scholar 

  • Cutler RWP, Lorenzo AV (1968) Transport of 1-aminocyclopentanecarboxylic acid from feline cerebrosphinal fluid. Science 161:1363

    CAS  PubMed  Google Scholar 

  • Daniel PM, Donaldson J, Pratt OE (1975) A method for injecting substances into the circulation to reach rapidly and to maintain a steady level. Med Biol Engineering 1975:214–227

    Google Scholar 

  • Daniel PM, Love ER, Pratt OE (1975b) Hypothyroidism and aminoacid entry into brain and muscle. Lancet 2:872

    CAS  PubMed  Google Scholar 

  • Daniel PM, Love ER, Moorhouse SR, Pratt OE (1981) The effect of insulin upon the influx of tryptophan into the brain of the rabbit. J Physiol (Lond) 312:551– 562

    CAS  Google Scholar 

  • DeMyer MK, Shea PA, Hendric HG, Yoshimura NN (1981) Plasma tryptophan and five other amino acids in depressed and normal subjects. Arch Gen Psychiatry 38:642–646

    CAS  PubMed  Google Scholar 

  • Eayrs JT (1954) The vascularity of the cerebral cortex in normal and cretinous rats. J Anat 88:164–173

    CAS  PubMed  Google Scholar 

  • Edwards DJ, Sorisio DA (1988) Effects of imipramine on tyrosine and tryptophan are mediated by p-adrenoceptor stimulation. Life Sci 42:853–862

    CAS  PubMed  Google Scholar 

  • Ehrlich BE, Diamond JM, Braun LD, Cornford EM, Oldendorf WH (1980) Effects of lithium on blood-brain barrier transport of the neurotransmitter precursors choline, tyrosine and tryptophan. Brain Res 193:604–607

    CAS  PubMed  Google Scholar 

  • Eriksson T, Carlsson A (1988) p-Adrenergic control of brain uptake of large neutral amino acids. Life Sci 42:1583–1589

    Google Scholar 

  • Fenstermacher JD, Rapoport SI (1984) Blood-brain Barrier. In: Renkin E, Michel C (eds) Handbook of physiology, The Cardiovascular system, vol 4, Chapter 21. American Physiological Society, Bethesda, USA, pp 969–1000

    Google Scholar 

  • Fernstrom JD, Wurtman RJ (1971) Brain serotonin content: increase following ingestion of a carbohydrate diet. Science 174:1023–1025

    CAS  PubMed  Google Scholar 

  • Fernstrom JD, Wurtman RJ (1972) Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178:414–416

    CAS  PubMed  Google Scholar 

  • Fernstrom JD, Wurtman RJ (1972) Elevation of plasma tryptophan by insulin in rat. Metabolism 21:337–342

    CAS  PubMed  Google Scholar 

  • Gaillard JM, Tissot T (1979) Blood-brain movement of tryptophan and tyrosine in manic depressive illness and schizophrenia. J Neural Transm [Suppl] 15:189–196

    CAS  Google Scholar 

  • Garnett ES, Firnau G, Nahmias C, Sood S, Belbeck L (1980) Blood-brain barrier transport and cerebral utilization of dopa in living monkeys. Am J Physiol 238:R318-R327

    CAS  PubMed  Google Scholar 

  • Gillman PK, Barlett JR, Bridges PK, Hunt A, Patel AJ, Kantamaneni BD, Curzon G (1981) Indolic substances in plasma, cerebrospinal fluid, and frontal cortex of human subjects infused with saline or tryptophan. J Neurochem 37:410–417

    CAS  PubMed  Google Scholar 

  • Glaeser BS, Maher TJ, Wurtman RJ (1983) Changes in brain levels of acidic, basic, and neutral amino acids after consumption of single meals containing various proportions of protein. J Neurochem 41:1016–1021

    CAS  PubMed  Google Scholar 

  • Goldstein GW, Wolinski JS, Csejtey J, Diamond I (1975) Isolation of metabolically active capillaries from rat brain. J Neurochem 25:715–717

    CAS  PubMed  Google Scholar 

  • Gorgievski-Hrisoho M, Colombo JP, Bachman C (1986) Stimulation of tryptophan uptake into brain micro vessels by D-glutamine. Brain Res 367:395–397

    CAS  PubMed  Google Scholar 

  • Hargreaves KM, Pardridge WM (1988) Neutral amino acid transport at the human blood-brain barrier. J Biol Chem 263:19392–19397

    CAS  PubMed  Google Scholar 

  • Harik SI, Sharma VK, Wetherbee JR, Warren RH, Banerjee SP (1980) Adrenergic receptors of cerebral micro vessels. Eur J Pharmacol 61: 207–208

    CAS  PubMed  Google Scholar 

  • Harper AE, Tews JK (1988) Nutritional and metabolic control of brain amino acid concentrations. In: Huether (ed) Amino acid availability and brain function in health and disease. Springer, Berlin Heidelberg New York, pp 3–12 (NATO ASI Series, vol H20)

    Google Scholar 

  • Hawkins RA, Mans AM, Biebuyck JF (1982) Amino acid supply to individual structures in awake and anesthetized rats. Am J Physiol 242: El-Ell

    Google Scholar 

  • Hawkins RA, Huang S-C, Barrio JR, Keen RE, Feng D, Mazziota JC, Phelps ME (1989) Estimation of local cerebral protein synthesis rates with L-[l-11C] leucine and PET: methods, model, and results in animals and humans. J Cereb Blood Flow Metab 9:446–460

    CAS  PubMed  Google Scholar 

  • Herbst TJ, Raichle ME, Ferrendelli J A (1979) p-Adrenergic regulation of adenosine- 3′,5′ monophosphate concentration in brain microvessels. Science 204:330–332

    CAS  PubMed  Google Scholar 

  • Hervonen H, Stein wall O (1984) Endothelial surface sulfhydryl-group in blood-brain barrier transport of nutrients. Acta Physiol Scand 121:343–351

    CAS  PubMed  Google Scholar 

  • Hjelle JT, Baird-Lambert J, Cardinale G, Spector S, Udenfriend S (1978) Isolated microvessels: the blood-brain barrier in vitro. Proc Natl Acad Sci USA 75:4544–4548

    CAS  PubMed  Google Scholar 

  • Huang M, Drummond GI (1979) Adenylate cyclase in cerbral microvessels: action of guanine nucleotides, adenosine and other agonists. Mol Pharmacol 16:462–472

    Google Scholar 

  • Hughes CCW, Lantos PL (1989) Uptake of leucine and alanine by cultured cerebral capillary endothelial cells. Brain Res 480:126–132

    CAS  PubMed  Google Scholar 

  • Hutchinson HT, Eisenberg HM, Haber B (1985) High-affinity transport of glutamate in rat brain microvessels. Exp Neurol 87:260–269

    Google Scholar 

  • Hutson PH, Knott PJ, Curzon G (1980) Effect of isoprenaline infusion on the distribution of tryptophan, tyrosine and isoleucine between brain and other tissues. Biochem Pharmacol 29:509–51

    CAS  PubMed  Google Scholar 

  • Hwang SM, Weiss S, Segal S (1980) Uptake of L-[35S]cystine by isolated rat brain capillaries. J Neurochem 35:417–424

    CAS  PubMed  Google Scholar 

  • Hwang SM, Miller M, Segal S (1983) Uptake of L-[14C]proline by isolated rat brain capillaries. J Neurochem 40:317–323

    CAS  PubMed  Google Scholar 

  • James JH, Fischer JE (1981) Transport of neutral amino acids at the blood-brain barrier. Pharmacology 22:1–7

    CAS  PubMed  Google Scholar 

  • James JH, Escourrou J, Fischer JE (1978) Blood-brain neutral amino acid transport activity is increased after portocaval anastomosis. SciencÄ› 200:1395–1397

    CAS  PubMed  Google Scholar 

  • James JH, Jeppsson B, Ziparo V, Fischer JE (1979) Hyperammonaemia, plasma amino acid imbalance, and blood-brain amino acid transport: a unified theory of portal-systemic encephalopathy. Lancet 2:772–775

    CAS  PubMed  Google Scholar 

  • Jeppsson B, James JH, Edwards LL, Fischer JE (1985) Relationship of brain glutamine and brain neutral amino acid concentrations after portacaval anastomosis in rats. Eur J Clin Invest 15:179–187

    CAS  PubMed  Google Scholar 

  • Johanson CE (1989) Ontogeny and phylogeny of the blood-brain barrier. In: Neuwelt EA (ed) Implications of the blood-brain barrier and its manipulation, vol 1. Plenum, New York, p 157

    Google Scholar 

  • Jonung T, Rigotti P, James JH, Brackett K, Fischer JE (1985) Effect of hyperammonemia and methionine sulfoximine on the kinetic parameters of blood-brain transport of leucine and phenylalanine. J Neurochem 45:308–318

    CAS  PubMed  Google Scholar 

  • Joô F, Karnuschina I (1973) A procedure of the isolation of capillaries from rat brain. Cytobios 8:41–48

    PubMed  Google Scholar 

  • Joô F, Toth I, Jancso G (1975) Brain adenylate cyclase: its common occurrence in the capillaries and astrocytes. Naturwissenschaften 62:397–398

    PubMed  Google Scholar 

  • Knott PJ, Curzon G (1972) Free tryptophan in plasma and brain tryptophan metabolism. Nature 239:452–453

    CAS  PubMed  Google Scholar 

  • Knudsen GM, Pettigrew KD, Patlak CS, Hertz MM, Paulson OB (1990) Asymmetrical transport of amino acids across the blood-brain barrier in humans. J Cereb Blood Flow Metab 10:698–706

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Memo M, Spano PF, Trabucchi M (1981) Identification of p- adrenergic receptor binding sites in rat brain micro vessels, using [125I]iodohydroxybenzylpindolol. J Neurochem 36:1383–1388

    CAS  PubMed  Google Scholar 

  • Lajtha A, Dunlop D (1981) Turnover of protein in the nervous system. Life Sci 29:755–767

    CAS  PubMed  Google Scholar 

  • LaManna JC, Harik SI (1986) Regional studies of blood-brain barrier transport of glucose and leucine in awake and anesthetized rats. J Cereb Blood Flow Metab 6:717–723

    CAS  PubMed  Google Scholar 

  • Leathwood PD, Fernstrom JD (1990) Effect of an oral tryptophan/carbohydrate load on tryptophan, large neutral amino acid, and serotonin and 5- hydroxyindoleacetic acid levels in monkey brain. J Neural Transm (Gen Sect) 79:25–34

    CAS  Google Scholar 

  • Lefauconnier JM, Trouvé R (1983) Development changes in the pattern of amino acid transport at the blood-brain barrier in rats. Develop Brain Res 6:175–182

    CAS  Google Scholar 

  • Lefauconnier JM, Urban F, Mandel P (1978) Taurine transport into the brain in rat. Biochimie 4:381–387

    Google Scholar 

  • Lefauconnier JM, Lavielle E, Terrien N, Bernard G, Fournier E (1980) Effect of various lead doses on some cerebral capillary functions in the suckling rat. Toxicol Appl Pharmacol 55:467–476

    CAS  PubMed  Google Scholar 

  • Lefauconnier JM, Lacombe P, Bernard G (1985) Cerebral blood flow and blood- brain barrier influx of some neutral amino acids in control and hypothyroid 16-day-old rats. J Cereb Blood Flow Metab 5:318–326

    CAS  PubMed  Google Scholar 

  • Lefauconnier JM, Tayarani I, Roux F (1985) Delineation of transport systems for some neutral amino acids in isolated rat brain micro vessels. J Cereb Blood Flow Metab 5 (Suppl 1):S91-S92

    Google Scholar 

  • Lefauconnier JM, Bernard G (1985) Evolution of cerebral blood flow and blood- brain clearance of phenylalanine and alanine during rat development. J Cereb Blood Flow Metab 5 (Suppl 1):S93-S94

    Google Scholar 

  • Lefauconnier JM, Tayarani I, Bernard G (1986) Blood-brain barrier permeability to excitatory amino acids. Adv Exp Med Biol 203:191–198

    CAS  PubMed  Google Scholar 

  • Lefauconnier JM, Bouchaud C, Bernard G (1991) Initial process of diffusion of small molecules from blood vessels to the meninges in the young rat. Neurosci Lett 121:9–11

    CAS  PubMed  Google Scholar 

  • Lorenzo AV, Cutler RWP (1969) Amino acid transport by choroid plexus in vitro.J Neurochem 16:577–585

    CAS  PubMed  Google Scholar 

  • Lorenzo AV, Gewirtz M (1977) Inhibition of [14C]tryptophan transport into brain of lead exposed neonatal rabbits. Brain Res 132:386–392

    CAS  PubMed  Google Scholar 

  • Maes M, Jacobs MP, Suy E, Vandewoude M, Minner B, Raus J (1990) Effects of dexamethasone on the availability of L-tryptophan and on the insulin and FFA concentrations in unipolar depressed patients. Biol Psychiatry 27:854–862

    CAS  PubMed  Google Scholar 

  • Mans AM, Biebuyck JF, Shelly K, Hawkins RA (1982) Regional blood-brain barrier permeability to amino acids after portacaval anastomosis. J Neurochem 38:705–717

    Google Scholar 

  • Mans AM, DeJoseph R, Davis DW, Hawkins RA (1987) Regional amino acid transport into brain during diabetes: effect of plasma amino acids. Am J Physiol 253:E575-E583

    CAS  PubMed  Google Scholar 

  • Markovitz DC, Fernstrom JD (1977) Diet and uptake of aldomet by the brain: competition with natural large neutral amino acids. Science 197:1014–1015

    CAS  PubMed  Google Scholar 

  • McCall AL, Millington WR, Wurtmann RJ (1982) Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. Proc Natl Acad Sci USA 79:5406–5410

    CAS  PubMed  Google Scholar 

  • Michaelson A, Bradbury M (1982) Effect of early inorganic lead exposure on rat blood-brain barrier permeability to tyrosine or choline. Biochem Pharmacol 31:1881–1885

    CAS  PubMed  Google Scholar 

  • Miller LP, Pardridge WM, Braun LD, Oldendorf WH (1985) Kinetic constants for blood-brain barrier amino acid transport in conscious rats. J Neurochem 45:1427–1432

    CAS  PubMed  Google Scholar 

  • MÇ¿ller SE (1988) Tryptophan and tyrosine ratios to neutral amino acids in depressed patient in regard to Km: relation to efficacy of antidepressant treatments. In: Huether G (ed) Amino acid availability and brain function in health and disease. Springer, Berlin Heidelberg New York, pp 355–361 (NATO ASI series, vol H20)

    Google Scholar 

  • MÇ¿ller SE, Bech P, Berrum H, Bojholm S, Butler B, Folker H, Gram LF, Larsen JK, Lauritzen L, Loldrup D, Munk-Andersen E, Odum K, Rafaelsen OJ (1990) Plasma ratio tryptophan/neutral amino acids in relation to clinical response to paroxetine and clomipramine in patients with major depression. J Affect Disord 18, 59–66

    PubMed  Google Scholar 

  • Momma S, Aoyagi M, Rapoport SI, Smith QR (1987) Phenylalanine transport across the blood-brain barrier as studied with the in situ brain perfusion technique. J Neurochem 48, 1291–1300

    CAS  PubMed  Google Scholar 

  • Mooradian AD (1990) Metabolic fuel and amino acid transport into the brain in experimental hypothyroidism. Acta Endocrinol 122(2): 156–162

    CAS  PubMed  Google Scholar 

  • Moorhouse SR, Carden S, Drewitt PN, Eley BP, Hargreaves RJ, Pelling D (1988) The effect of chronic low level lead exposure on blood-brain barrier function in the developing rat. Biochem Pharmacol 37:4539–4547

    CAS  PubMed  Google Scholar 

  • Murray JE, Cutler RWP (1970) Transport of glycine from the cerebrospinal fluid. Arch Neurol 23:23–31

    CAS  PubMed  Google Scholar 

  • Nagashima T, Lefauconnier JM, Smith QR (1987) Developmental changes in neutral amino acid transport across the blood-brain barrier. J Cereb Blood Flow Metab 7 (Suppl 1):S524

    Google Scholar 

  • Nathanson JA, Glaser JH (1979) Identification of P-adrenergic-sensitive adenylate cyclase in intracranial blood vessels. Nature 278:567–569

    CAS  PubMed  Google Scholar 

  • Ohno K, Pettigrew KD, Rapoport SI (1978) Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am J Physiol 235:H299–H307

    CAS  PubMed  Google Scholar 

  • Oldendorf WH (1971) Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 221:1629–1639

    CAS  PubMed  Google Scholar 

  • Oldendorf WH, Szabo J (1976) Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Physiol 230:94–98

    CAS  PubMed  Google Scholar 

  • Oldendorf WH, Sisson WB, Silverstein A (1971) Brain uptake of selenomethionine Se 75. Arch Neurol 24:524–528

    CAS  PubMed  Google Scholar 

  • Olney JW (1969) Brain lesions, obesity and other disturbances in mice treated with sodium glutamate. Science 164:719–721

    CAS  PubMed  Google Scholar 

  • Olney JW (1986) Excitotoxic amino acids. NIPS 1:19–23

    CAS  Google Scholar 

  • Orlowski M, Sessa G, Green JP (1974) y-Glutamyl transpeptidase in brain capillaries: possible site of a blood-brain barrier for amino acids. Science 184:66–68

    Google Scholar 

  • Oxender DL, Christensen HN (1963) Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem 238:3686–3699

    CAS  PubMed  Google Scholar 

  • Pardridge WM (1976) Inorganic mercury: selective effects on blood-brain barrier transport systems. J Neurochem 27:333–335

    CAS  PubMed  Google Scholar 

  • Pardridge WM (1977) Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J Neurochem 28:103–108

    CAS  PubMed  Google Scholar 

  • Pardridge WM (1979) Regulation of amino acid availability to brain: selective control mechanism for glutamate. In: Filer LJ(eds) Glutamic acid: advances in biochemistry and physiology. Raven, New York

    Google Scholar 

  • Pardridge WM (1983) Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev 63:1481–1535

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Fierer G (1990) Transport of tryptophan into brain from the circulating albumin-bound pool in rats and in rabbits. J Neurochem 54:971–976

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Oldendorf WH (1975) Kinetic analysis of blood-brain transport of amino acids. Biochim Biophys Acta 401:128–136

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Oldendorf WH (1977) Transport of metabolic substrates through the blood-brain barrier. J Neurochem 28:5–12

    CAS  PubMed  Google Scholar 

  • Peng Y, Tews JK, Harper AE (1972) Amino acid imbalance, protein intake, and changes in rat brain and plasma amino acids. Am J Physiol 222:314–321

    CAS  PubMed  Google Scholar 

  • Pentschew A, Garro F (1966) Lead encephalo-myelopathy of the suckling rat and its implications on the prophyrinopathic nervous diseases. Acta Neuropathol 6:266–278

    CAS  PubMed  Google Scholar 

  • Peroutka SJ, Moskowitz MA, Reinhard JF, Snyder SH (1980) Neurotransmitter receptor binding in bovine cerebral microvessels. Science 208:610–612

    CAS  PubMed  Google Scholar 

  • Preston JE, Segal MB (1990) The steady-state amino acid fluxes across the perfused choroid plexus of the sheep. Brain Res 525:275–279

    CAS  PubMed  Google Scholar 

  • Rassin DK (1990) transport into brain of albumin-bound amino acids. J Neurochem 55:722

    CAS  PubMed  Google Scholar 

  • Reith J, Ermisch A, Diemer NH, Gjedde A (1987) Saturable retention of vasopressin by hippocampus vessels in vivo, associated with inhibition of blood- brain transfer of large neutral amino acids. J Neurochem 49:1471–1479

    CAS  PubMed  Google Scholar 

  • Richter JJ, Wainer A (1971) Evidence for separate systems for the transport of neutral and basic amino acids across the blood-brain barrier. J Neurochem 18:613–620

    CAS  PubMed  Google Scholar 

  • Rosenberg R, Young JD, Ellory JC (1980) L-Tryptophan transport in human red blood cells. Biochim Biophys Acta 598:375–384

    CAS  PubMed  Google Scholar 

  • Ross HJ, Wright EM (1984) Neutral amino acid transport by plasma membrane vesicles of the rabbit choroid plexus. Brain Res 295:155–160

    CAS  PubMed  Google Scholar 

  • Rossi-Fanelli F, Cascino A, Strom R, Cardelli-Cangiano P, Ceci F, Muscaritoli M, Cangiano C (1987) Amino acids and hepatic encephalopathy. Prog Neurobiol 28:277–301

    CAS  PubMed  Google Scholar 

  • Sage JJ, Duffy TE (1979) Pentobarbital anesthesia: influence on amino acid transport across the blood-brain barrier. J Neurochem 33:963–965

    CAS  PubMed  Google Scholar 

  • Schwartz JC, Lampart C, Rose C (1972) Histamine formation in rat brain in vivo: effects of histidine loads. J Neurochem 19:801–810

    CAS  PubMed  Google Scholar 

  • Sershen H, Lajtha A (1976) Capillary transport of amino acids in the developing brain. Exp Neurol 53:465–474

    CAS  PubMed  Google Scholar 

  • Sershen H, Lajtha A (1979) Inhibition pattern by analogs indicates the presence of ten or more transport systems for amino acids in brain cells. J Neurochem 32:719–726

    CAS  PubMed  Google Scholar 

  • Shot well MA, Kilberg MS, Oxender DL (1983) The regulation of neutral amino acid transport in mammalian cells. Biochim Biophys Acta 737:267–284

    CAS  Google Scholar 

  • Smith QR, Takasato Y, Sweeney DJ, Rapoport SI (1985) Regional cerebrovascular transport of leucine as measured by the in situ brain perfusion technique. J Cereb Blood Flow Metab 5:300–311

    CAS  PubMed  Google Scholar 

  • Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49:1651–1658

    CAS  PubMed  Google Scholar 

  • Smith QR, Fukui S, Robinson P, Rapoport SI (1990) Influence of cerebral blood flow on tryptophan uptake into brain 364–369. In: Lubec G, Rosenthal GA (eds) Amino acids. ESCOM

    Google Scholar 

  • Snodgrass SR, Lorenzo AV (1973) Transport of GAB A from the perfused ventricular system of the cat. J Neurochem 20:761–769

    CAS  PubMed  Google Scholar 

  • Snodgrass SR, Cutler RWP, Song Kang E, Lorenzo AV (1969) Transport of neutral amino acids from feline cerebrospinal fluid. Am J Physiol 217:974–980

    CAS  PubMed  Google Scholar 

  • Tagliamonte A, Tagliamonte P, Forn J, Perez-Cruet J, Krishna G, Gessa GL (1971) Stimulation of brain serotonin synthesis by dibutyryl-cyclic AMP in rats. J Neurochem 18:1191–1196

    CAS  PubMed  Google Scholar 

  • Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in rat. Am J Physiol 247:H484-H493

    CAS  PubMed  Google Scholar 

  • Tayarani I, Lefauconnier JM, Roux F, Bourre JM (1987) Evidence for an alanine, serine and cysteine system of transport in isolated brain capillaries. J Cereb Blood Flow Metab 7:585–591

    CAS  PubMed  Google Scholar 

  • Tayarani I, Lefauconnier JM, Bourre JM (1987) The effect of mercurials on amino acid transport and rubidium uptake by isolated rat brain micro vessels. Neurotoxicol 8:543–552

    CAS  Google Scholar 

  • Tayarani I, Cloez I, Lefauconnier JM, Bourre JM (1989) Sodium-dependent high- affinity uptake of taurine by isolated rat brain capillaries. Biochim Biophys Acta 985:168–172

    CAS  PubMed  Google Scholar 

  • Tovar A, Tews JK, Torres N, Harper AE (1988) Some characteristics of threonine transport across the blood-brain barrier of the rat. J Neurochem 51:1285- 1293

    CAS  PubMed  Google Scholar 

  • Van Gelder NM (1968) A possible enzyme barrier for y-aminobutyric acid in the central nervous system. Prog Brain Res 29:259–271

    PubMed  Google Scholar 

  • Wade LA, Katzman R (1975) Synthetic amino acids and the nature of L-DOPA transport at the blood-brain barrier. J Neurochem 25:837–842

    CAS  PubMed  Google Scholar 

  • Wade LA, Katzman R (1975) Rat brain regional uptake and decarboxylation of L-DOPA following carotid injection. Am J Physiol 228:352–359

    CAS  PubMed  Google Scholar 

  • Wade LA, Brady HM (1981) Cysteine and cystine transport at the blood-brain barrier. J Neurochem 37:730–734

    CAS  PubMed  Google Scholar 

  • Weissbach L, Handlogten ME, Christensen HN, Kilberg MS (1982) Evidence for two Na-independent neutral amino acid transport systems in primary cultures of rat hepatocytes. J Biol Chem 257:12006–12011

    CAS  PubMed  Google Scholar 

  • White MF, Gazzola GC, Christensen HN (1982) Cationic amino acid transport into cultured animal cells. J Biol Chem 257:4443–4449

    CAS  PubMed  Google Scholar 

  • Wise WC (1975) Maturation of membrane function: transport of amino acid by rat erythroid cells. J Cell Physiol 87:199–212

    CAS  PubMed  Google Scholar 

  • Wright EM (1974) Active transport of glycine across the frog arachnoid membrane. Brain Res 76:354–358

    CAS  PubMed  Google Scholar 

  • Wurtman RJ, Chou C, Rose C (1970) The fate of 14C-dihydroxyphenylalanine (14C- dopa) in the whole mouse. J Pharmacol Exp Ther 174:351–356

    CAS  PubMed  Google Scholar 

  • Young SN, Lai S, Sourkes TL, Feldmuller F, Aronoff A, Martin JB (1975) Relationships between tryptophan in serum and CSF, and 5-hydroxyindoleacetic acid inCSF of man: effect of cirrhosis of liver and probenecid administration. J Neurol Neurosurg Psychiatr 38:322–330

    CAS  PubMed  Google Scholar 

  • Yudilevich DL, De Rose N, Sepülveda FV (1972) Facilitated transport of amino acids through the blood-brain barrier of the dog studied in a single capillary circulation. Brain Res 44:569–578

    CAS  PubMed  Google Scholar 

  • Yuwiler A, Bennett BL, Brammer GL, Geller E (1979) Lithium treatment and tryptophan transport through the blood-brain barrier. Biochem Pharmacol 28: 2709–2712

    CAS  PubMed  Google Scholar 

  • Zanchin G, Rigotti P, Dussini N, Vassanelli P, Battistin L (1979) Cerebral amino acid levels and uptakes in rats after portocaval anastomosis. II Regional studies in vivo. J Neurosci Res 4:301–310

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lefauconnier, JM. (1992). Transport of Amino Acids. In: Bradbury, M.W.B. (eds) Physiology and Pharmacology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76894-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76894-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76896-5

  • Online ISBN: 978-3-642-76894-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics