Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 103))

Abstract

Under normal circumstances, a mixture of α-and β-D-glucopyranose (D-glucose) is the only fuel of brain energy metabolism (Pardridge 1983). The breakdown of D-glucose is regulated by complex mechanisms that influence the activities of phosphofructokinase and hexokinase. The metabolism depends indirectly on the glucose concentration of the brain intracellular and interstitial fluids. Since the tissue glucose concentration, in turn, depends directly on the glucose phosphorylation rate, the blood-brain transfer assumes a pivotal role in the supply of glucose to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew WF Crone C (1967) Permeability of brain capillaries to hexoses and pentoses in the rabbit. Acta Physiol Scand 70:168–175

    CAS  Google Scholar 

  • Asano T, Shibasaki Y, Kasuga M, Kanazawa Y, Takaku F, Akanuma Y, Oka Y (1988) Cloning of a rabbit brain glucose transporter cDNA and alteration of glucose transporter mRNA during tissue development. Biochem Biophys Res Commun 154:1204–1211

    CAS  PubMed  Google Scholar 

  • Axelrod JD, Pilch PF (1983) Unique cytochalasin B binding characteristics of the hepatic glucose carrier. Biochemistry 22:2222–2227

    CAS  PubMed  Google Scholar 

  • Bachelard HS, Daniel PM, Love ER, Pratt OE (1973) The transport of glucose into the brain of the rat in vivo. Proc R Soc Lond B 183:990–993

    Google Scholar 

  • Bagley PR, Tucker SP, Nolan C, Lindsay JG, Davies A, Baldwin SA, Cremer JE, Cunningham VJ (1989) Anatomical mapping of glucose transporter protein and pyruvate dehydrogenase in rat brain: an immunogold study. Brain Res 499:214–224

    Google Scholar 

  • Baker GF, Widdas WF (1973) The asymmetry of the facilitated transfer system for hexose simple kinetics of a two component model. J Physiol 231 (Lond): 143–165

    Google Scholar 

  • Baldwin SA, Lienhard GE (1981) Glucose transport across plasma membranes: facilitated diffusion systems. Trends Biochem Sci 6:208–211

    CAS  Google Scholar 

  • Baldwin SA, Lienhard GE (1989) Purification and reconstitution of glucose transporter from human erythrocytes. Methods Enzymol 174:39–50

    Google Scholar 

  • Baldwin SA, Baldwin JM, Lienhard GE (1982) Monosaccaride transporter of the human erythrocyte. Characterization of an improved preparation. Biochemistry 21:3836–3842

    CAS  PubMed  Google Scholar 

  • Baldwin SA, Brewster F, Cairns MT, Gardiner RM, Ruggier R (1984) Identification of a D-glucose sensitive cytochalasin B binding component of isolated ovine cerebral microvessels. J Physiol (Lond) 357:75P

    Google Scholar 

  • Baldwin SA, Cairns MT, Gardiner RM, Ruggier R (1985) A D-glucose sensitive cytochalasin B binding component of cerebral microvessels. J Neurochem 45:650–652

    CAS  PubMed  Google Scholar 

  • Baraett JEG, Holman RA, Chalkey RA, Munday KA (1975) Evidence for two asymmetric conformational states in the human erythrocyte sugar transport system. Biochem J 145:417–429

    Google Scholar 

  • Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S (1990) Molecular biology of mammalian glucose transporters. Diabetes Care 13:198–208

    CAS  PubMed  Google Scholar 

  • Berson FG, Spatz M, Klatzo I (1975) Effects of oxygen saturation and PCO2on brain uptake of glucose analogues in rabbits. Stroke 6:691–696

    CAS  PubMed  Google Scholar 

  • Betz AL, Gilboe DD (1974) Kinetics of cerebral glucose transport in vivo: inhibition by 3-O-methylglucose. Brain Res 65:368–372

    CAS  PubMed  Google Scholar 

  • Betz AL, Goldstein GW (1981) Developmental changes in metabolism and transport properties of capillaries isolated from rat brain. J Physiol (Lond) 312:365–376

    CAS  Google Scholar 

  • Betz AL, Iannotti F (1983) Simultaneous determination of regional cerebral blood flow and blood-brain glucose transport kinetics in the gerbil. J Cereb Blood Flow Metab 3:193–199

    CAS  PubMed  Google Scholar 

  • Betz AL, Gilboe DD, Yudilevich DK, Drewes LR (1973) Kinetics of unidirectional glucose transport into the isolated dog brain. Am J Physiol 225:586–592

    CAS  PubMed  Google Scholar 

  • Betz AL, Gilboe DD, Drewes LR (1974) Effects of anoxia on net uptake and unidirectional transport of glucose into the isolated dog brain. Brain Res 65:307–316

    Google Scholar 

  • Betz AL, Drewes LR, Gilboe DD (1975) Inhibition of glucose transport into brain by phlorizin, phloretin and glucose analogues. Biochim Biophys Acta 406:505–515

    Google Scholar 

  • Betz AL, Csejtey J, Goldstein GW (1979) Hexose transport and phosphorylation by capillaries isolated from rat brain. Am J Physiol 236:C96-C102

    CAS  PubMed  Google Scholar 

  • Betz AL, Bowman PD, Goldstein GW (1983) Hexose transport in microvascular endothelial cells cultured from bovine retina. Exp Eye Res 36:269–277

    CAS  PubMed  Google Scholar 

  • Betz AL, Iannotti F, Hoff JT (1983) Ischemia reduces blood-to-brain glucose transport in the gerbil. J Cereb Blood Flow Metab 3:200–206

    CAS  PubMed  Google Scholar 

  • Bidder TG (1968) Hexose translocation across the blood-brain interface: configurational aspects. J Neurochem 15:867–874

    CAS  PubMed  Google Scholar 

  • Birnbaum MJ (1989) Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell 57:305–315

    CAS  PubMed  Google Scholar 

  • Birnbaum MJ, Haspel HC, Rosen OM (1986) Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci USA 83:5784–5788

    CAS  PubMed  Google Scholar 

  • Blasberg RG, Patlak CS, Jehle JW, Fenstermacher JD (1978) An autoradiographic technique to measure the permeability of normal and abnormal brain capillaries. Neurology 28:363

    Google Scholar 

  • Blomqvist G (1984) On the construction of functional maps in positron emission tomography. J Cereb Blood Flow Metab 4:629–632

    CAS  PubMed  Google Scholar 

  • Blomqvist G, Bergström K, Bergström M, Ehrin E, Eriksson L, Garmelius B, Lindberg B, Lilja A, Litton J-E, Lundmark L, Lundqvist H, Malmborg P, Moström U, Nilsson L, Stone-Elander S, Widén L (1985) Models for 11C- glucose. In: Greitz T, Ingvar DH, Widén L (eds) The metabolism of the human brain studied with positron emission tomography. Raven, New York, p 185

    Google Scholar 

  • Blomqvist G, Gjedde A, Gutniak M, Grill V, Widén L, Stone-Elander S, Hellstrand E (1991) Facilitated transport of glucose from blood to brain in man and the effect of moderate hypoglycemia on regional cerebral glucose utilization. Eur J Nucl Med 18:834–837

    CAS  PubMed  Google Scholar 

  • Boado RJ, Pardridge WM (1990) The brain-type glucose transporter mRNA is specifically expressed at the blood-brain barrier. Biochem Biophys Res Commun 166:174–179

    CAS  PubMed  Google Scholar 

  • Bohr C (1909) Über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion. Skand Arch Physiol 22:221–280

    Google Scholar 

  • Bradbury MWB (1985) The blood-brain barrier in vitro. Neurochem Int 7:27–28

    CAS  PubMed  Google Scholar 

  • Braun LD, Cornford EM, Oldendorf WH (1980) Newborn rabbit blood-brain barrier is selectively permeable and differs substantially from the adult. J Neurochem 34:147–152

    CAS  PubMed  Google Scholar 

  • Braun LD, Miller LP, Pardridge WM, Oldendorf WH (1985) Kinetics of regional blood-brain barrier glucose transport and cerebral blood flow determined with the carotid injection technique in conscious rats. J Neurochem 44:911–915

    CAS  PubMed  Google Scholar 

  • Brender J, Andersen PE, Rafaelsen OJ (1975) Blood-brain transfer of D-glucose, L-leucine, and L-tryptophan in the rat. Acta Physiol Scand 93:490–499

    CAS  PubMed  Google Scholar 

  • Brooks DJ, Beaney RP, Lammertsma AA, Herold S, Turton DR, Luthra SK, Frackowiak RSJ, Thomas DGT, Marshall J, Jones T (1986) Glucose transport across the blood-brain barrier in normal human subjects and patients with cerebral tumours studied using [11C]3–0-methyl-D-glucose and positron emission tomography. J Cereb Blood Flow Metab 6:230–239

    CAS  PubMed  Google Scholar 

  • Brooks DJ, Gibbs JSR, Sharp P, Herold S, Turton DR, Luthra SK, Kohner EM, Bloom SR, Jones T (1986) Regional cerebral glucose transport in insulin- dependent diabetic patients studied using [11C]3–0-methyl-D-glucose and positron emission tomography. J Cereb Blood Flow Metab 6:240–244

    CAS  PubMed  Google Scholar 

  • Brǿndsted HE, Gjedde A (1988) Measuring brain glucose phosphorylation with labeled glucose. Am J Physiol 254 (Endocrinol Metab 17):E443-E448

    PubMed  Google Scholar 

  • Bryan RM, Hawkins RA, Mans AM, Davis DW, Page RB (1983) Cerebral glucose utilization in awake unstressed rats. Am J Physiol 244:C270-C275

    CAS  PubMed  Google Scholar 

  • Buschiazzo PM, Terrell EB, Regen DM (1970) Sugar transport across the blood — brain barrier. Am J Physiol 219:1505–1513

    CAS  PubMed  Google Scholar 

  • Carruthers A (1986) ATP regulation of the human red cell sugar transporter. J Biol Chem 261:11028–11037

    CAS  PubMed  Google Scholar 

  • Carruthers A (1990) Facilitated diffusion of glucose. Physiol Rev 70:1135–1176

    CAS  PubMed  Google Scholar 

  • Carter-Su C, Pessin JE, Mora R, Gitomer W, Czech MP (1982) Photoaffinity labeling of the human erythrocyte D-glucose transporter. J Biol Chem 257:5419–5425

    CAS  PubMed  Google Scholar 

  • Charron M, Brosius FC, Alper SL, Lodish HF (1989) A glucose transport protein expressed predominantly in insulin-responsive tissues. Proc Natl Acad Sci USA 86:2535–2539

    CAS  PubMed  Google Scholar 

  • Choi TB, Boado RJ, Pardridge WM (1989) Blood-brain barrier glucose transporter mRNA is increased in experimental diabetes mellitus. Biochem Biophys Res Commun 164:375–380

    CAS  PubMed  Google Scholar 

  • Christensen O, Andersen HL, Betz AL, Gilboe DD (1982) Transport of glucose across the blood-brain barrier: réévaluation of the accelerative exchange diffusion. Acta Physiol Scand 115:233–238

    CAS  PubMed  Google Scholar 

  • Christensen TG, Diemer NH, Laursen H, Gjedde A (1981) Starvation accelerates blood-brain glucose transfer. Acta Physiol Scand 112:221–223

    CAS  PubMed  Google Scholar 

  • Cornford EM, Cornford ME (1986) Nutrient transport and the blood-brain barrier in developing animals. Fed Proc 45:2065–2072

    CAS  PubMed  Google Scholar 

  • Cornford EM, Braun LD, Oldendorf WH (1982) Developmental modulations of blood-brain barrier permeability as an indicator of changing nutritional requirements in the brain. Pediatr Res 16:324–328

    CAS  PubMed  Google Scholar 

  • Crane PD, Pardridge WM, Braun LD, Oldendorf WH (1983) Kinetics of transport and phosphorylation of 2-fluoro-2-deoxy-D-glucose in rat brain. J Neurochem 40:160–167

    CAS  PubMed  Google Scholar 

  • Crane PD, Pardridge WM, Braun LD, Oldendorf WH (1985) Two-day starvation does not alter the kinetics of blood-brain barrier transport and phosphorylation of glucose in rat brain. J Cereb Blood Flow Metab 5:40–46

    CAS  PubMed  Google Scholar 

  • Cremer JE, Cunningham VJ (1979) Effects of some chlorinated sugar derivatives on the hexose transport system of the blood-brain barrier. Biochem J 180:677–679

    CAS  PubMed  Google Scholar 

  • Cremer JE, Braun LD, Oldendorf WH (1976) Changes during development in transport processes of the blood-brain barrier. Biochim Biophys Acta 448:633–637

    CAS  PubMed  Google Scholar 

  • Cremer JE, Cunningham VJ, Pardridge WM, Braun LD, Oldendorf WH (1979) Kinetics of blood-brain transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J Neurochem 33:439–446

    CAS  PubMed  Google Scholar 

  • Cremer JE, Ray DE, Sarna GS, Cunningham VJ (1981) A study of the kinetic behaviour of glucose based on simultaneous estimates of influx and phosphorylation in brain regions of rats in different physiological states. Brain Res 221:331–342

    CAS  PubMed  Google Scholar 

  • Cremer JE, Cunningham VJ, Seville MP (1983) Relationship between extraction and metabolism of glucose, blood flow, and tissue blood volume in regions of rat brain. J Cereb Blood Flow Metab 3:291–302

    CAS  PubMed  Google Scholar 

  • Cremer JE, Seville MP, Cunningham VJ (1988) Tracer deoxyglucose kinetics in brain regions of rats given kainic acid. J Cereb Blood Flow Metab 8:244–253

    CAS  PubMed  Google Scholar 

  • Crone C (1960) The diffusion of some organic non-electrolytes from blood to brain tissue. Acta Physiol Scand 50 [Suppl 175]:33–34

    Google Scholar 

  • Crone C (1963) The permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol Scand 58:292–305

    CAS  PubMed  Google Scholar 

  • Crone C (1965) Facilitated transfer of glucose from blood into brain tissue. J Physiol (Lond) 181:103–113

    CAS  Google Scholar 

  • Crone C (1975) General properties of the blood-brain barrier with special emphasis on glucose. In: Cserr HF, Fenstermacher JD, Fencl V (eds) Fluid environment of the brain. Academic, New York, p 33

    Google Scholar 

  • Crone C (1985) The blood-brain barrier: a modified tight epithelium. In: Suckling AJ, Rumsby MG, Bradbury MWB (eds) The blood-brain barrier in health and disease. Ellis Horwood, Chichester, p 17

    Google Scholar 

  • Cunningham VJ, Cremer JE (1981) A method for the simultaneous estimation of regional rates of glucose influx and phosphorylation in rat brain using radiolabeled 2-deoxyglucose. Brain Res 221:319–330

    CAS  PubMed  Google Scholar 

  • Cunningham VJ, Sarna GS (1979) Estimation of the kinetic parameters of unidirectional transport across the blood-brain barrier. J Neurochem 33:433–437

    CAS  PubMed  Google Scholar 

  • Cunningham VJ, Hargreaves RJ, Pelling D, Moorhouse SR (1986) Regional blood- brain glucose transfer in the rat: a novel double-membrane kinetic analysis. J Cereb Blood Flow Metab 6:305–314

    CAS  PubMed  Google Scholar 

  • Cunningham VJ, Cremer JE, Hargreaves RJ (1989) Relationships between neuronal activity, energy metabolism and cerebral circulation. In: Buattaini F, Govoni S, Maghoni MS, Trabucchi M (eds) Regulatory mechanisms of neuron to vessel communication in the brain. Springer, Berlin Heidelberg New York, p 325 (NATO ASI Ser H, vol 33)

    Google Scholar 

  • Cutler RWP, Sipe JC (1971) Mediated transport of glucose between blood and brain in the cat. Am J Physiol 220(5): 1182–1186

    CAS  PubMed  Google Scholar 

  • Daniel PM, Moorehouse SR, Love ER, Pratt OE (1971) Factors influencing utilization of ketone-bodies by brain in normal rats. Lancet ii:637–638

    Google Scholar 

  • Daniel PM, Donaldson J, Pratt OE (1975) A method for injecting substances into the circulation to reach rapidly and to maintain a steady level. Med Biol Eng 13:214–227

    CAS  PubMed  Google Scholar 

  • Daniel PM, Love ER, Pratt OE (1975b) Insulin and the way the brain handles glucose. J Neurochem 25:471–476

    CAS  PubMed  Google Scholar 

  • Daniel PM, Love ER, Pratt OE (1978) The effect of age upon the influx of glucose into the brain. J Physiol (Lond) 274:141–148

    CAS  Google Scholar 

  • Daniel PM, Love ER, Pratt OE (1980) Inhibition of glucose transport into the brains of suckling rats by raising the level of galactose in the blood. J Physiol (Lond) 305:44–45

    Google Scholar 

  • DeFronzo RA, Andres R, Bledsoe TA, Boden G, Faloona GA, Tobin JD (1977) A test of the hypothesis that the rate of fall in glucose concentration triggers counterregulatory hormonal responses in man. Diabetes 26:445–452

    CAS  PubMed  Google Scholar 

  • DeFronzo RA, Hendler R, Christensen N (1980) Stimulation of counterregulatory hormonal responses in diabetic man by a fall in glucose concentration. Diabetes 29:125–131

    CAS  PubMed  Google Scholar 

  • DeVivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI (1991) Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 325:703–709

    CAS  Google Scholar 

  • Dick APK, Harik SI (1986) Distribution of the glucose transporter in the mammalian brain. J Neurochem 46:1406–1411

    CAS  PubMed  Google Scholar 

  • Dick APK, Harik SI, Klip A, Walker DM (1984) Identification and characterization of the glucose transporter of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. Proc Natl Acad Sci USA 81:7233–7237

    CAS  PubMed  Google Scholar 

  • Diemer NH, Benveniste H, Gjedde A (1985) In vivo cell membrane permeability to deoxyglucose in rat brain. Acta Neurol Scand 72:87

    Google Scholar 

  • Djuricic DM, Kostic VS, Mrsulja BB (1983) Insulin increases entrance of 2-deoxy-D — [3H]glucose in isolated rate brain microvessels. Brain Res 275:186–188

    CAS  PubMed  Google Scholar 

  • Drewes LR, Horton RW, Betz AL, Gilboe DD (1977) Cytochalasin B inhibition of brain glucose transport and the influence of blood components on inhibitor concentration. Biochim Biophys Acta 471:477–486

    CAS  PubMed  Google Scholar 

  • Duckrow RB (1988) Glucose transfer into rat brain during acute and chronic hyperglycemia. Metab Brain Dis 3:201–209

    CAS  PubMed  Google Scholar 

  • Dyve S, Gjedde A (1991) Glucose metabolism of fetal rat brain in utero measure with labeled deoxyglucose. Acta Neurol Scand 83:14–19

    CAS  PubMed  Google Scholar 

  • Eadie GS (1942) The inhibition of Cholinesterase by physostigmine and prostigmine. J Biol Chem 146:85–93

    CAS  Google Scholar 

  • Eadie GS (1952) On the evaluation of the constants Vmand KMin enzyme reactions. Science 116:688

    CAS  PubMed  Google Scholar 

  • Eastman RC, Carson RE, Gordon ME, Berg GW, Lillioja S, Larson SM, Roth J (1990) Brain glucose metabolism in noninsulin-dependent diabetes mellitus: a study in Pima Indians using positron emission tomography during hyperinsulinemia with euglycemic glucose clamp. J Clin Endocrinol Metab 71:1602–1610

    CAS  PubMed  Google Scholar 

  • Evans AC, Diksic M, Yamamoto YL, Kato A, DAgher A, Redies C, Hakim A (1986) Effect of vascular activity in the determination of rate constants for the uptake of 18F-labeled 2-fluoro-2-deoxy-D-glucose: error analysis and normal values in older subjects. J Cereb Blood Flow Metab 6:724–738

    CAS  PubMed  Google Scholar 

  • Feinendegen LE, Herzog H, Wieler H, Patton DD, Schmid A (1986) Glucose transport and utilization in the human brain: model using carbon-11 methylglucose and positron emission tomography. J Nucl Med 27:1864–1877

    Google Scholar 

  • Friedland RP, Budinger TF, Yano Y, Huesman RH, Knittel B, Derenzo SE, Koss B, Ober BA (1983) Regional cerebral metabolic alterations in Alzheimer-type dementia: kinetic studies with 18-fluorodeoxyglucose. J Cereb Blood Flow Metab 3[Suppl 1]:S510-S511

    Google Scholar 

  • Froehner SC, Davis A, Baldwin SA, Leinhard GE (1988) The blood-nerve barrier is rich in glucose transporter. J Neurocytol 17:173–178

    CAS  PubMed  Google Scholar 

  • Fuglsang A, Lomholt M, Gjedde A (1986) Blood-brain transfer of glucose and glucose analogs in newborn rats. J Neurochem 46:1417–1428

    CAS  PubMed  Google Scholar 

  • Fujikawa DG, Dwyer BE, Lake RG, Wasterlain CG (1989) Local cerebral glucose utilization during status epilepticus in newborn primates. Am J Physiol 256 (Cell Physiol 25):CI 160-CI 167

    Google Scholar 

  • Fukumoto H, Seino S, Imura H, Seino Y, Bell GI (1988) Characterization and expression of human HepG2/erythrocyte glucose-transporter gene. Diabetes 37:657–661

    CAS  PubMed  Google Scholar 

  • Fukumoto H, Kayano T, Buse JB, Edwards Y, Pilch PF, Bell GI, Seino S (1989) Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J Biol Chem 264:7776–7779

    CAS  PubMed  Google Scholar 

  • Furier SM, Jenkins AB, Stolien LH, Kraegen EW (1991) In vivo location of the rate limiting step of hexose uptake in muscle and brain tissue of the rat. Am J Physiol 261:E337-E347

    Google Scholar 

  • Gerhart DZ, LeVasseur RJ, Broderuis MA, Drewes LR (1989) Glucose transporter localization in brain using light and electron immunocytochemistry. J Neurosci Res 22:464–472

    CAS  PubMed  Google Scholar 

  • Germinario RJ, Rockman H, Oliveira M, Manuel S, Taylor M (1982) Regulation of sugar transport in cultured diploid human skin fibroblasts. J Cell Physiol 112:367–372

    CAS  PubMed  Google Scholar 

  • Gjedde A (1980) Rapid steady-state analysis of blood-brain glucose transfer in rat. Acta Physiol Scand 108:331–339

    CAS  PubMed  Google Scholar 

  • Gjedde A (1981a) Regulation and adaptation of substrate transport to the brain. Adv Physiol Sci 7:307–315

    CAS  Google Scholar 

  • Gjedde A (1981) High- and low-affinity transport of D-glucose from blood to brain. J Neurochem 36:1463–1471

    CAS  PubMed  Google Scholar 

  • Gjedde A (1982) Calculation of glucose phosphorylation from brain uptake of glucose analogs in vivo. A re-examination. Brain Res Rev 4:237–274

    CAS  Google Scholar 

  • Gjedde A (1983) Modulation of substrate transport to the brain. Acta Neurol Scand 67:3–25

    CAS  PubMed  Google Scholar 

  • Gjedde A (1984) Blood-brain transfer of galactose in experimental galactosemia, with special reference to the competitive interaction between galactose and glucose. J Neurochem 43:1654–1662

    CAS  PubMed  Google Scholar 

  • Gjedde A (1984) On the measurement of glucose in brain. Neurochem Res 9:1665–1669

    Google Scholar 

  • Gjedde A (1987) Does deoxyglucose uptake in the brain reflect energy metabolism? Biochem Pharmacol 36:1853–1861

    CAS  PubMed  Google Scholar 

  • Gjedde A, Bodsch W (1987) Facilitated diffusion across the blood-brain barrier: interactions between receptors and transporters. Karl Marx U. Math Natur Wiss R 36:67–71

    Google Scholar 

  • Gjedde A, Christensen O (1984) Estimates of Michaelis-Menten constants for the two membranes of the brain endothelium. J Cereb Blood Flow Metab 4:241–249

    Google Scholar 

  • Gjedde A, Crone C (1975) Induction processes in blood-brain transfer of ketone bodies during starvation. Am J Physiol 229:1165–1169

    CAS  PubMed  Google Scholar 

  • Gjedde A, Crone C (1981) Blood-brain glucose transfer: repression in chronic hyperglycemia. Science 214:456–457

    CAS  PubMed  Google Scholar 

  • Gjedde A, Diemer NH (1983) Autroadiographic determination of regional brain glucose content. J Cereb Blood Flow Metab 3:303–310

    CAS  PubMed  Google Scholar 

  • Gjedde A, Diemer NH (1985) Relationship between unidirectional and net uptake of glucose and glucose analog into brain: on the variability of transfer and lumped constants. In: Greitz T. (eds) The metabolism of the human brain studied with positron emission tomography. Raven, New York, p 207

    Google Scholar 

  • Gjedde A, Diemer NH (1985) Double-tracer study of the fine regional blood-brain glucose transfer in the rat by computer-assisted autoradiography. J Cereb Blood Flow Metab 5:282–289

    CAS  PubMed  Google Scholar 

  • Gjedde A, Lauritzen M (1985) The CO2-reactivity of blood-brain glucose transport in rat, 12th International Symposium on Cerebral Blood Flow and Metabolism. Studentlitteratur, Lund

    Google Scholar 

  • Gjedde A, Rasmussen M (1980) Blood-brain glucose transport in the conscious rat: comparison of the intravenous and intracarotid methods. J Neurochem 35:1375–1381

    Google Scholar 

  • Gjedde A, Rasmussen M (1980) Pentobarbital anesthesia reduces blood-brain glucose transfer in the rat. J Neurochem 35:1382–1387

    CAS  PubMed  Google Scholar 

  • Gjedde A, Siemkowicz E (1978) Post-ischemic coma in rat: effect of glucose and insulin treatment on cerebral metabolic recovery. Trans Am Neurol Assoc 103:45–47

    CAS  PubMed  Google Scholar 

  • Gjedde A, Hansen AJ, Siemkowicz E (1980) Rapid simultaneous determination of regional blood flow and blood-brain glucose transfer in brain of rat. Acta Physiol Scand 108:321–330

    CAS  PubMed  Google Scholar 

  • Gjedde A, Hansen AJ, Quistorff B (1981) Blood-brain glucose transfer in spreading depression. J Neurochem 37:807–812

    CAS  PubMed  Google Scholar 

  • Gjedde A, Wienhard K, Heiss W-D, Kloster G, Diemer NH, Herholz K, Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab 5:163–178

    CAS  PubMed  Google Scholar 

  • Gjedde A, Kuwabara H, Hakim AM (1990) Reduction of functional capillary density in human brain after stroke. J Cereb Blood Flow Metab 3:317–326

    Google Scholar 

  • Gjedde A, Kuwabara H, Ohta S, Brust P, Meyer E (1991) Density of perfused capillaries in living human brain during functional activation. Prog Brain Res 19:209–215

    Google Scholar 

  • Goodwin RFW (1956) Distribution of sugar between red cells and plasma: variations associated with age and species. J Physiol 134 (Lond): 88–101

    CAS  PubMed  Google Scholar 

  • Growdon WA, Bratton TS, Houston MC, Tarpley HL, Regen DM (1971) Brain glucose metabolism in the intact mouse. Am J Physiol 221:1738–1745

    CAS  PubMed  Google Scholar 

  • Gutniak M, Blomqvist G, Stone-Elander S, Widen L, Hamberger B, Grill V (1990) Cerebral blood flow and substrate utilization in insulin-treated diabetic subjects. Am J Physiol 258:E805-E812

    CAS  PubMed  Google Scholar 

  • Hargreaves RJ, Planas AM, Cremer JE, Cunningham VJ (1986) Studies on the relationship between cerebral glucose transport and phosphorylation using 2- deoxyglucose. J Cereb Blood Flow Metab 6:708–716

    CAS  PubMed  Google Scholar 

  • Harik SI (1988) Glucose transporter of the blood-brain barrier and brain in chronic hyperglycemia. J Neurochem 51:1930–1934

    CAS  PubMed  Google Scholar 

  • Harik SI, LaManna JC (1988) Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycaemia. J Neurochem 51:1924–1929

    CAS  PubMed  Google Scholar 

  • Harik SI, Gravina SA, Kalaria RN (1988) Glucose transporter of the blood-brain barrier and brain in chronic hyperglycaemia. J Neurochem 51:1930–1934

    CAS  PubMed  Google Scholar 

  • Harik SI, Kalaria RN, Andersson L, Lundahl P, Perry G (1990) Immunocytochemical localization of the erythroid glucose transporter: abundance in tissues with barrier functions. J Neurosci 10:3862–3872

    CAS  PubMed  Google Scholar 

  • Harik SI, Behmand RA, Arafah BM (1991) Chronic hyperglycaemia increases the density of glucose transporters in human erythrocyte membranes. J Clin Endocrinol Metab 72:814–818

    CAS  PubMed  Google Scholar 

  • Harik SI, Behmand RE, LaManna JC (1991) Chronic hypobaric hypoxia increases the density of cerebral capillaries and their glucose transporter protein, J Cereb Blood Flow Metab 11 [Suppl 1]:S496

    Google Scholar 

  • Harris M, Prout BJ (1970) Relative hypoglycaemia. Lancet ii:317

    Google Scholar 

  • Hasselbalch S, Knudsen GM, Jakobsen J, Holm S, H0gh P, Paulson O (1991) The effect of insulin on brain FDG transport and metabolism in man studied by PET. J Cereb Blood Flow Metab 11 [Suppl 2]:S465

    Google Scholar 

  • Hawkins RA, Mans AM, Davis DW, Hibbard LS, Lu DM (1983) Glucose availability to individual cerebral structures is correlated to glucose metabolism. J Neurochem 40:1013–1018

    CAS  PubMed  Google Scholar 

  • Hawkins RA, Phelps ME, Huang SC (1984) Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumor with PET. J Cereb Blood Flow Metab 6:170–183

    Google Scholar 

  • Hawkins RA, Phelps ME, Huang SC (1986) Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumor with PET. J Cereb Blood Flow Metab 6:170–183

    CAS  PubMed  Google Scholar 

  • Helgerson AL, Carruthers A (1989) Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Biochemistry 28:4580–4594

    CAS  PubMed  Google Scholar 

  • Helgerson AL, Hebert DN, Naderi S, Carruthers A (1989) Characterization of two independent modes of action of ATP on human erythrocyte sugar transport. Biochemistry 28:6410–6417

    CAS  PubMed  Google Scholar 

  • Hertz MM, Paulson OB (1982) Transfer across the human blood-brain barrier: evidence for capillary recruitment and for a paradox glucose permeability increase in hypocapnia. Microvasc Res 24:364–376

    CAS  PubMed  Google Scholar 

  • Hertz MM, Paulson OB, Barry DI, Christensen JS, Svendsen PA (1981) Insulin increases glucose transfer across the blood-brain barrier in man. J Clin Invest 67:597–604

    CAS  PubMed  Google Scholar 

  • Hofstee BHJ (1952) On the evaluation of the constants Vmand KMin enzyme reactions. Science 116:329–331

    CAS  PubMed  Google Scholar 

  • Hofstee BHJ (1954–56) Graphical analysis of single enzyme systems. Enzymologia 17:273–278

    CAS  PubMed  Google Scholar 

  • Horton RW (1973) The kinetics of glucose influx into the mouse brain in vivo and the effects of pentobarbitone anaesthesia and hypothermia. 54th Meeting Transactions of the Biochemical Society 1:127–128

    Google Scholar 

  • Hunziker O, Abdel’al S, Schulz U (1979) The aging human cerebral cortex: a stereological characterization of changes in the capillary net. J Gerontol 34:345–350

    Google Scholar 

  • Jacquez JA (1984) Red blood cell as glucose carrier: significance for placental and cerebral glucose transfer. Am J Physiol 246:R289-R298

    CAS  PubMed  Google Scholar 

  • Jagust WJ, Seab JP, Huesman RH, Valk PE, Mathis CA, Reed BR, Coxson PG, Budinger TF (1991) Diminished glucose transport in Alzheimer’s disease: dynamic PET studies. J Cereb Blood Flow Metab 11:323–330

    CAS  PubMed  Google Scholar 

  • James DE, Brown R, Navarro J, Pilch PF (1988) Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature 333:183–185

    CAS  PubMed  Google Scholar 

  • James DE, Strube M, Mueckler M (1989) Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338:83–87

    CAS  PubMed  Google Scholar 

  • Johnson JA, Wilson TA (1966) A model for capillary exchange. Am J Physiol 210:1299–1303

    CAS  PubMed  Google Scholar 

  • Joô F (1985) The blood-brain barrier in vitro: ten years of research on microvessels isolated from the brain. Neurochem Int 7:1–25

    PubMed  Google Scholar 

  • Kalaria RN, Harik SI (1989) Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer’s disease. J Neurochem 53:1083–1088

    CAS  PubMed  Google Scholar 

  • Kalaria RN, Gravina SA, Schmidley JW, Perry G, Harik SI (1988) The glucose transporter of the human brain and blood-brain barrier. Ann Neurol 24:757–764

    CAS  PubMed  Google Scholar 

  • Kasahara M, Hinkle PC (1976) Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes. Proc Natl Acad Sci USA 73:396–400

    CAS  PubMed  Google Scholar 

  • Kasahara M, Hinkle PC (1977) Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem 252:7384–7390

    CAS  PubMed  Google Scholar 

  • Kasanicki MA, Cairns MT, Davis A, Gardiner RM, Baldwin SA (1987) Identification and characterization of the glucose-transport of the bovine blood/ brain barrier. Biochem J 247:101–108

    CAS  PubMed  Google Scholar 

  • Kato A, Diksic M, Yamamoto YL, Strother SC, Feindel W (1984) An improved approach for measurement of regional cerebral rate constants in the deoxyglucose method with positron emission tomography. J Cereb Blood Flow Metab 4:555–563

    CAS  PubMed  Google Scholar 

  • Kayano T, Fukumoto H, Eddy RL, Fan Y-S, Byers MG, Shows TB, Bell GI (1988) Evidence for a family of human glucose transporter-like proteins. J Biol Chem 263:15245–15248

    CAS  PubMed  Google Scholar 

  • Kayano T, Burant CF, Fukumoto G, Gould W, Fan Y-S, Eddy RL, Byers MG, Shows TB, Seine S, Bell GI (1990) Human facilitative glucose transporters. J Biol Chem 265:13276–13282

    CAS  PubMed  Google Scholar 

  • Kety SS (1951) The theory and application of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41

    CAS  PubMed  Google Scholar 

  • Kety SS (1960) Theory of blood-tissue exchange and its application to measurement of blood flow. In: Bruner HD (ed) Methods in medical research, vol 8. Year Book, New York, p 223

    Google Scholar 

  • Kintner D, Costello DJ, Levin AB, Gilboe DD (1980) Brain metabolism after 30 minutes of hypoxic or anoxic perfusion or ischemia. Am J Physiol 239:E501–E509

    CAS  PubMed  Google Scholar 

  • Kletzien RF, Perdue J (1985) Induction of sugar transport in chick embryo fibroblasts by hexose starvation: evidence for transcriptional regulation of transport. J Biol Chem 250:593–600

    Google Scholar 

  • Kletzien RF, Perdue J, Springer A (1972) Inhibition of sugar uptake in cultured cells. J Biol Chem 247:2964–2966

    CAS  PubMed  Google Scholar 

  • Klip A, Paquet MR (1990) Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 13:228–243

    CAS  PubMed  Google Scholar 

  • Klip A, Dimitrakoudis D, Ramlal T, Burdett E, Marette A, Bilan P, Mitsumoto Y, Kojvisto U-M, Sarabia V (1991) Regulation of glucose transport and transporters in muscle: acute and chronic effects of insulin and glucose. Symposium on advances in regulation of carbohydrate metabolism, Jerusalem

    Google Scholar 

  • Knudsen GM, Pettigrew KD, Paulson OB, Hertz MM, Patlak CS (1990) Kinetic analysis of blood-brain barrier transport of D-glucose in man: quantitative evaluation in the presence of tracer backflux and capillary heterogeneity. Microvasc Res 39:28–49

    CAS  PubMed  Google Scholar 

  • Knudsen GM, Hertz M, Paulson OB (1991) Does capillary recruitment exist in the human brain? J Cereb Blood Flow Metab 11 [Suppl 2]:S442

    Google Scholar 

  • Kolber AR, Bagnell CR, Krigman MR, Hayward J, Morell P (1979) Transport of sugars into microvessels isolated from rat brain: a model for the blood-brain barrier. J Neurochem 33:419–432

    CAS  PubMed  Google Scholar 

  • Krogh A (1946) The active and passive exchanges of inorganic ions through the surface of living cells and through membranes generally. Proc R Soc Lond Ser B 133:140–200

    CAS  Google Scholar 

  • Kuwabara H, Gjedde A (1991) Measurements of glucose phosphorylation with FDG and PET are not reduced by dephosphorylation of FDG-6-phosphate. J Nucl Med 32:692–698

    CAS  PubMed  Google Scholar 

  • Kuwabara H, Evans AC, Gjedde A (1990) Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [18F]fluroodeoxyglucose. J Cereb Blood Flow Metab 10:180–189

    CAS  PubMed  Google Scholar 

  • LaManna JC, Harik SI (1985) Regional comparisons of brain glucose influx. Brain Res 326:299–305

    CAS  PubMed  Google Scholar 

  • LaManna JC, Harik SI (1986) Regional studies of blood-brain transport of glucose and leucine in awake and anesthetized rats. J Cereb Blood Flow Metab 6:717–723

    CAS  PubMed  Google Scholar 

  • Lammertsma AA, Brooks DJ, Frackowiak SJ, Beaney RP, Herold S, Heather JD, Palmer AJ, Jones T (1987) Measurement of glucose utilization with [18F]2- fluoro-2-deoxy-D-glucose: a comparison of different analytical methods. J Cereb Blood Flow Metab 7:161–172

    CAS  PubMed  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 37:2221–2295

    Google Scholar 

  • Lassen NA, Gjedde A (1983) Kinetic analysis of the uptake of glucose and some of its analogs in the brain, using the single capillary model: comments on some points of controversy. In: Lambrecht RM, Rescigno A (eds)) Lecture notes in biomathematics. Springer, Berlin Heidelberg New York, pp 387–410

    Google Scholar 

  • Lassen NA, Trap-Jensen AJ, Alexander SC, Olesen J, Paulson OB (1971) Blood- brain barrier studies in man using the double-indicator method. Am J Physiol 220:1627–1633

    CAS  PubMed  Google Scholar 

  • LeFevre PG (1948) Evidence of active transfer of certain non-electrolytes across the human red cell membrane. J Gen Physiol 31:505–527

    CAS  PubMed  Google Scholar 

  • LeFevre PG (1961) Sugar transport in the red blood cell: structure activity relationships in substrates and antagonists. Pharmacol Rev 16:39–70

    Google Scholar 

  • Levine R, Goldstein M, Klein S, Huddlestun B (1949) The action of insulin on the distribution of galactose in eviscerated nephrectomized dogs. J Biol Chem 179:985–986

    CAS  PubMed  Google Scholar 

  • Lilavivathane U, Brodows RG, Woolf PD, Campbell RG (1979) Counterregulatory hormonal responses to rapid glucose lowering in diabetic man. Diabetes 28:873–877

    Google Scholar 

  • Lin S, Spudich J A (1974) Biochemical studies on the mode of action of cytochalasin B. J Biol Chem 249:5778–5783

    CAS  PubMed  Google Scholar 

  • Lowe AG, Walmsley AR (1986) The kinetics of glucose transport in human red blood cells. Biochim Biophys Acta 857:146–154

    CAS  PubMed  Google Scholar 

  • Lund-Andersen H (1979) Transport of glucose from blood to brain. Physiol Rev 59:305–352

    CAS  PubMed  Google Scholar 

  • Lund-Andersen H, Kjeldsen CS (1976) Uptake of glucose analogues by rat brain cortex slices: a kinetic analysis based upon a model. J Neurochem 27:361–368

    Google Scholar 

  • Lund-Andersen H, Kjeldsen CS (1977) Uptake of glucose analogues by rat brain cortex slices: membrane transport versus metabolism of 2-deoxy-D-glucose. J Neurochem 29:205–211

    CAS  PubMed  Google Scholar 

  • Lundsgaard E (1939) On the mode of action of insulin. Uppsala Lak Foren Forh 45:1–4

    Google Scholar 

  • Mans AM, Davis DW, Biebuyck JF, Hawkins RA (1986) Failure of glucose and branched chain amino acids to normalize brain glucose use in portacaval shunted rats. J Neurochem 47:1434–1443

    CAS  PubMed  Google Scholar 

  • Matthaei S, Horuk R, Olefsy JM (1986) Blood-brain glucose transfer in diabetes mellitus. Decreased number of glucose transporters at blood-brain barrier. Diabetes 35:1181–1184

    CAS  PubMed  Google Scholar 

  • Matthaei S, Garvey WT, Horuk T, Hueckstadt TP, Olefsky JM (1987) Human adipocyte glucose transport system: biochemical and functional heterogeneity of hexose carriers. J Clin Invest 79:703–709

    CAS  PubMed  Google Scholar 

  • Matthaei S, Olefsky JM, Horuk R (1987) Biochemical characterization and subcellular distribution of the glucose transporter from rat brain micro vessels. Biochim Biophys Acta 905:417–425

    CAS  PubMed  Google Scholar 

  • Maxwell K, Berliner JA, Cancilla PA (1989) Stimulation of glucose analogue uptake by cerebral micro vessel endothelial cells by a product released by astrocytes. J Neuropathol Exp Neurol 48:69–80

    CAS  PubMed  Google Scholar 

  • Mayman CI, Gatfield PD, Breckenbridge BM (1964) The glucose content of brain in anaesthesia. J Neurochem 11:483–487

    CAS  PubMed  Google Scholar 

  • McCall AL, Millington WR, Wurtman RJ (1982) Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. Proc Natl Acad Sci USA 79:5406–5410

    CAS  PubMed  Google Scholar 

  • McCall AL, Fixman LB, Fleming N, Tornheim K, Chick W, Ruderman NB (1986) Chronic hypoglycemia increases brain glucose transport. Am J Physiol 251:E442-E447

    CAS  PubMed  Google Scholar 

  • Michaelis L, Menten ML (1913) Die Kinetik der InvertinWirkung. Biochem Z 49:333–369

    CAS  Google Scholar 

  • Mooradian AD, Morin AM (1991) Brain uptake of glucose in diabetes mellitus: the role of glucose transporters. Am J Med Sci 301:173–177

    CAS  Google Scholar 

  • Moore TJ, Lione AP, Sugden MSM, Regen DM (1976) ß-hydroxybutyrate transport in rat brain: developmental and dietary modulations. Am J Physiol 230:619–630

    CAS  PubMed  Google Scholar 

  • Morin AM, Dwyer BE, Fujikawa DG, Wasterlain CG (1988) Low [3H]cytochalasin B binding in the cerebral cortex of newborn rat. J Neurochem 51:206–211

    CAS  PubMed  Google Scholar 

  • Mueckler MC, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF (1985) Sequence and structure of a human glucose transporter. Science 229:941–945

    CAS  PubMed  Google Scholar 

  • Naftalin RJ (1988) Pre-steady-state uptake of D-glucose by the human erythrocyte is inconsistent with a circulating carrier mechanism. Biochim Biophys Acta 946:431–438

    CAS  PubMed  Google Scholar 

  • Namba H, Lucignani G, Nehlig A, Patlak C, Pettigrew K, Kennedy C, Sokoloff L (1987) Effects of insulin on hexose transport across blood- brain barrier in normoglycemia. Am J Physiol 252:E299–E303

    CAS  PubMed  Google Scholar 

  • Nemoto EM, Stezoski SW, MacMurdo D (1978) Glucose transport across the rat blood-brain barrier during anesthesia. Anesthesiology 49:170–176

    CAS  PubMed  Google Scholar 

  • Oka Y, Asano T, Shibasaki Y, Kasuga M, Kanazawa Y, Takaku F (1989) Studies with antipeptide antibody suggest the presence of at least two types of glucose transporter in rat brain and adipocyte. J Biol Chem 263:13432–13439

    Google Scholar 

  • Oka Y, Asano T, Shibasaki Y, Lin J-L, Tsukuda K, Katagiri H, Akanuma Y, Takaku F (1990) C-terminal truncated glucose transporter is locked into an inward-facing form without transport activity. Nature 345:550–553

    CAS  PubMed  Google Scholar 

  • Oldendorf WH (1970) Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res 24:372–376

    CAS  PubMed  Google Scholar 

  • Oldendorf WH (1971) Brain uptake of labeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 221:1629–1639

    CAS  PubMed  Google Scholar 

  • Oldendorf WH, Braun LD (1976) [3H]tryptamine and 3H-water as diffusible internal standards for measuring brain extraction of radiolabeled substances following carotid injection. Brain Res 113:219–224

    Google Scholar 

  • Pappenheimer JR, Setchell (1973) Cerebral glucose transport and oxygen consumption in sheep and rabbits. J Physiol (Lond) 233:529–551

    CAS  PubMed  Google Scholar 

  • Pardridge WM (1983) Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev 63:1481–1535

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Oldendorf WH (1975) Kinetics of blood-brain barrier transport of hexoses. Biochim Biophys Acta 382:377–392

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Oldendorf WH (1977) Transport of metabolic substrates through the blood-brain barrier. J Neurochem 28:5–12

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Crane PD, Mietus LJ, Oldendorf WH (1982) Kinetics of regional blood-brain barrier transport and brain phosphorylation of glucose and 2- deoxyglucose in the barbiturate-anesthetized rat. J Neurochem 38:560–568

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Landaw EM, Miller LP, Braun LD, Oldendorf WH (1985) Carotid artery injection technique: bounds for bolus mixing by plasma and by brain. J Cereb Blood Flow Metab 5:576–583

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Boado RJ, Farrell C (1990a) Downregulation of blood-brain barrier glucose transporter in experimental diabetes. Diabetes 39:1040–1044

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Boado RJ, Farrell C (1990) Brain-type glucose transporter (GLUT- 1) is selectively localized to the blood-brain barrier. J Biol Chem 265:18035- 18040

    CAS  PubMed  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to- brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    CAS  PubMed  Google Scholar 

  • Pelligrino DA, Segil LJ, Albrecht RF (1990) Brain glucose utilization and transport and cortical function in chronic vs. acute hypoglycemia. Am J Physiol 259:E729-E735

    CAS  PubMed  Google Scholar 

  • Pelligrino DA, Lipa MD, Albrecht RF (1990) Regional blood-brain glucose transfer and glucose utilization in chronically hyperglycemic, diabetic rats following acute glycemic normalization. J Cereb Blood Flow Metab 10:775–780

    Google Scholar 

  • Pessin JE, Tillotson LG, Yamada K, Gitomer W, Carter-Su C, Mora R, Isselbacher KJ, Czech M (1982) Identification of the stereospecific hexose transporter from starved and fed chicken embryo fibroblasts. Proc Natl Acad Sci USA 79:2286–2290

    CAS  PubMed  Google Scholar 

  • Phelps ME, Huan SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with [F18] 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:271–388

    Google Scholar 

  • Pilch PF (1990) Glucose transporters: what’s in a name? Endocrinology 126:3–5

    CAS  PubMed  Google Scholar 

  • Planas AM, Cunningham VJ (1987) Uncoupling of cerebral glucose supply and utilization after hexane-2,5-dione intoxication in the rat. J Neurochem 48:816–823

    Google Scholar 

  • Pollay M, Stevens FA (1979) Starvation-induced changes in transport of ketone bodies across the blood-brain barrier. J Neurosci Res 5:163–172

    Google Scholar 

  • Raichle ME, Larson KB, Phelps ME, Grubb RL Jr, Welch MJ, Ter-Pogossian MM (1975) In vivo measurement of brain glucose transport and metabolism employing glucose-11C. Am J Physiol 228:1936–1948

    CAS  PubMed  Google Scholar 

  • Ramlal T, Rastogi S, Vranic M, Klip A (1989) Decrease in glucose transporter number in skeletal muscle of mildly diabetic (streptozotocin-treated) rats. Endocrinology 125:890–897

    CAS  PubMed  Google Scholar 

  • Redies C, Hoffer LJ, Beil C, Marliss EB, Evans AC, Lariviere F, Marrett S, Meyer E, Diksic M, Gjedde A, Hakim AM (1989) Generalized decrease in brain glucose metabolism during fasting in humans studied by PET. Am J Physiol 256:E805-E810

    CAS  PubMed  Google Scholar 

  • Reith J, Ermisch A, Diemer NH, Gjedde A (1987) Saturable retention of vasopressin in vivo, associated with inhibition of blood-brain transfer of large neutral amino acids. J Neurochem 49:1471–1480

    CAS  PubMed  Google Scholar 

  • Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    CAS  PubMed  Google Scholar 

  • Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, MacGregor RR, Shiue CY, Atkins H, Anand A, Dann R, Greenberg JH (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab 5:179–192

    CAS  PubMed  Google Scholar 

  • Rescigno A, Beck JS, Goren HJ (1983) Determination of dependence of binding parameters on receptor occupancy. Bull Math Biol 44:477–489

    Google Scholar 

  • Ribeiro L, Bercovic SF, Kuwabara H, Andermann F, Gjedde A (1991) Functional capillary density is reduced in brain of patients with MERFF (myoclonus epilepsy, ragged-red fiber syndrome). 21st Annual Meeting for Society for Neuroscience, 10–15 Nov 1991

    Google Scholar 

  • New Orleans Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. J Physiol 11:85–108

    Google Scholar 

  • Sapirstein LA (1958) Regional blood flow by fractional distribution of indicators. Am J Physiol 193:161–165

    CAS  PubMed  Google Scholar 

  • Sarna GS, Bradbury MWB, Cremer JE, Lai JCK, Teal HM (1979) Brain metabolism and specific transport at the blood-brain barrier after portocaval anastomosis in the rat. Brain Res 160:69–83

    CAS  PubMed  Google Scholar 

  • Sawada Y, Patlak CS, Blasberg RG (1989) Kinetic analysis of cerebrovascular transport based on indicator diffusion technique. Am J Physiol 256:794–812

    Google Scholar 

  • Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    CAS  Google Scholar 

  • Schaefer JA, Gjedde A, Plum F (1976) Regional cerebral blood blow using n-(14C)butanol. Neurology 26:394

    Google Scholar 

  • Shapiro ET, Cooper M, Chen C-T, Given BDF, Polonsky KS (1990) Change in hexose distribution volume and fractional utilization of [18F]-2-deoxy-2-fluoro- D-glucose in brain during acute hypoglycemia in humans. Diabetes 39:175–180

    CAS  PubMed  Google Scholar 

  • Sheppard CW (1948) The theory of the study of transfers within a multi- compartmental system using isotopic tracers. J Appl Physiol 19:70–76

    CAS  Google Scholar 

  • Shows TB, Eddy RL, Byers MG, Fukushima Y, Dehaven CR, Murray JC, Bell GI (1987) Polymorphic human glucose transport gene (GLUT) is on chromosome lp31.3—>p35. Diabetes 36:546–549

    CAS  PubMed  Google Scholar 

  • Slot JW, Moxley R, Geuze HJ, James DE, (1990) No evidence for expression of the insulin-regulatable glucose transporter in endothelial cells. Nature 346:369–371

    CAS  PubMed  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The 14C deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anaesthetized albino rat. J Neurochem 28:897–916

    CAS  PubMed  Google Scholar 

  • Stein WD (1986) Transport and diffusion across cell membranes. Academic, New York

    Google Scholar 

  • Stern L, Gautier R (1921) Recherches sur le liquide céphalo-rachidien. I. Les rapports entre le liquide céphalo-rachidien et la circulation sanguine. Arch Int Physiol 17:138–192

    CAS  Google Scholar 

  • Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247:H484-H493

    CAS  PubMed  Google Scholar 

  • Taverna RD, Langdon RG (1973) Reversible association of cytochalasin B with the human erythrocyte membrane: inhibition of glucose transport and the stoichiometry of cytochalasin binding. Biochim Biophys Acta 323:207–219

    CAS  PubMed  Google Scholar 

  • Thorens B, Sarkar HK, Kaback HR, Lodish HF (1988) Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta pancreatic islet cells. Cell 55:281–290

    CAS  PubMed  Google Scholar 

  • Tucker SP, Cunningham VJ (1988) Autoradiography of [3H]cytochalasin B binding in rat brain. Brain Res 450:131–136

    CAS  PubMed  Google Scholar 

  • Ullrey DB, Kalckar HM (1981) The nature of regulation of hexose transport in cultured mammalian fibroblasts: Aerobic ‘repressive’ control by D-glucosamine. Arch Biochem Biophys 209:168–174

    CAS  PubMed  Google Scholar 

  • Ullrey DB, Gammon BMT, Kalckar HM (1975) Uptake patterns and transport enhancements in cultures of hamster cells deprived of carbohydrates. Arch Biochem Biophys 167:410–416

    CAS  PubMed  Google Scholar 

  • Van Uitert RL, Levy DE (1978) Regional brain blood flow in the conscious gerbil. Stroke 9:67

    PubMed  Google Scholar 

  • Walker PS, Ramial T, Donovan JA, Doering TP, Sandra A, Klip A, Pessin JE (1989) Insulin and glucose-dependent regulation of the glucose transport system in the rate L6 skeletal muscle cell line. J Biol Chem 264:6587–6595

    CAS  PubMed  Google Scholar 

  • Werner H, Adamo M, Lowe WL, Roberts CT, LeRoith D (1989) Developmental regulation of rat brain/HepG2 glucose transporter gene expression. Mol Endocrinol 3:273–279

    CAS  PubMed  Google Scholar 

  • Wertheimer E, Sasson S, Cerasi C, Ben-Neriah Y (1991) The ubiguitous glucose transporter Glut-1 belongs to the glucose-regulated protein family of stress inducible protein. Proc Natl Acad Sci USA 88:2525–2529

    CAS  PubMed  Google Scholar 

  • Widdas WF (1952) Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J Physiol (Lond) 118:23–39

    CAS  Google Scholar 

  • Widdas WF (1955) Hexose permeability of foetal erythrocytes. J Physiol (Lond) 127:318–327

    CAS  Google Scholar 

  • Wyke BD (1959) Electroencephalographic studies in the syndrome of relative cerebral hypoglycemia. Electroencephalogr Clin Neurophysiol 11:602

    Google Scholar 

  • Yudelevich DL, DeRose N (1971) Blood-brain barrier transfer of glucose and other molecules measured by rapid indicator dilution. Am J Physiol 220:841–846

    Google Scholar 

  • Zlokovic BV, Begley DJ, Djuricic BM, Mitrovic DM (1986) Measurement of solute transport across the blood-brain barrier in the perfused guinea pig brain: method and application to N-methyl-a-aminoisobutyric acid. J Neurochem 46:1444–1451

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gjedde, A. (1992). Blood-Brain Glucose Transfer. In: Bradbury, M.W.B. (eds) Physiology and Pharmacology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76894-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76894-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76896-5

  • Online ISBN: 978-3-642-76894-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics