Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 103))

Abstract

It has long been appreciated that many cerebral disorders are associated with deficits in blood-brain barrier (BBB) function and the interest in barrier pathology is as intense now as it has ever been. There are a number of reasons why this should be the case.

The author’s barrier studies were supported by the Wellcome Trust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AD:

Alzheimer’s disease

BBB:

Blood-brain barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

HRP:

Horseradish peroxidase

MHC:

Major histocompatibility complex

References

  • Arthur FE, Shivers RR, Bowman PD (1987) Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res 433:155–159

    CAS  PubMed  Google Scholar 

  • Baethmann A, Maier-Hauff K, Kempski O, Unterberg A, Wahl M, Schurer L (1988) Mediators of brain edema and secondary brain damage. Crit Care Med 16:972–978

    Article  CAS  PubMed  Google Scholar 

  • Black KL, Hoff JT, McGillicuddy JE, Gebarski SS (1986) Increased leukotriene C4 and vasogenic edema surrounding brain tumors in humans. Ann Neurol 19: 592–595

    Article  CAS  PubMed  Google Scholar 

  • Bradbury MWB (1979) The concept of a blood-brain barrier. Wiley, Chichester Broman T (1944) Supravital analysis of disorders in the cerebral vascular permeability in man. Acta Med Scand 118:76–83

    Google Scholar 

  • Bullard BE, Adams CJ, Coleman RE, Bigner DD (1986) In vivo imaging of intracranial human glioma xenografts comparing specific with nonspecific radiolabeled monoclonal antibodies. J Neurosurg 64:257–262

    Article  CAS  PubMed  Google Scholar 

  • Cervos-Navarro J, Artigas J, Mrsulja BJ (1983) Morphofunctional aspects of the normal and pathological blood-brain barrier. Acta Neuropathol (Berl) [Suppl] 8:1–19

    Article  CAS  Google Scholar 

  • Chan PH, Fishman RA (1984) The role of arachidonic acid in vasogenic brain edema. Fed Proc 43:210–213

    CAS  PubMed  Google Scholar 

  • Coomber BL, Stewart PA (1986) Three-dimensional reconstruction of vesicles in endothelium of blood-brain barrier versus highly permeable micro vessels. Anat Rec 215:256–261

    Article  CAS  PubMed  Google Scholar 

  • Cornford EM, Oldendorf WH (1986) Epilepsy and the blood-brain barrier. Adv Neurol 44:787–812

    CAS  PubMed  Google Scholar 

  • Criscuolo GR, Merrill MJ, Oldfield EH (1988) Further characterization of malignant glioma-derived vascular permeability factor. J Neurosurg 69:254–262

    Article  CAS  PubMed  Google Scholar 

  • Deane BR, Lantos PL (1981a) The vasculature of experimental brain tumours. I. A sequential light and electron microscopic study of angiogenesis. J Neurol Sci 49:55–66

    Article  CAS  PubMed  Google Scholar 

  • Deane BR, Lantos PL (1981b) The vasculature of experimental brain tumours. II. A quantitative assessment of morphological abnormalities. J Neurol Sci 49:67–77

    Article  CAS  PubMed  Google Scholar 

  • Deane BR, Papp MI, Lantos PL (1984) The vasculature of experimental brain tumours. III. Permeability studies. J Neurol Sci 65:47–58

    Article  CAS  PubMed  Google Scholar 

  • Debbage PL, Gabius HJ, Bise K, Marguth F (1988) Cellular glycoconjugates and their potential endogenous receptors in the cerebral microvasculature of man: a glycohistochemical study. Eur J Cell Biol 46:425–434

    CAS  PubMed  Google Scholar 

  • Dietrich WD, Prado R, Watson BD (1988) Photochemically stimulated blood-borne factors induce blood-brain barrier alterations in rats. Stroke 19:857–862

    Article  CAS  PubMed  Google Scholar 

  • Dux E, Doczi T, Joo F, Szerdahelyi P, Siklos L (1988) Reverse pinocytosis induced in cerebral endothelial cells by injection of histamine into the cerebral ventricle. Acta Neuropathol (Berl) 76:484–488

    Article  CAS  Google Scholar 

  • Eikelenboom P, Scott JR, McBride PA, Rozemuller JM, Bruce ME, Fraser H (1987) No evidence for involvement of plasma proteins or blood-borne cells in amyloid plaque formation in scrapie-affected mice. An immunohistoperoxidase study. Virchows Arch [B] 53:251–256

    Article  CAS  Google Scholar 

  • Ellison MD, Povlishock JT, Hayes RL (1986) Examination of the blood-to-brain transfer of alpha-aminoisobutyric acid and horseradish peroxidase: regional alterations in blood-brain barrier function following acute hypertension. J Cereb Blood Flow Metab 6:471–480

    Article  CAS  PubMed  Google Scholar 

  • Fischer VW, Siddiqi A, Yusufaly Y (1990) Altered angioarchitecture in selected areas of brains with Alzheimer’s disease. Acta Neuropathol (Berl) 79:672–679

    Article  CAS  Google Scholar 

  • Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447

    Article  CAS  PubMed  Google Scholar 

  • Godeau G, Robert AM (1979) Mechanism of action of collagenase on the blood- brain barrier permeability. Increase of endothelial cell pinocytotic activity as shown with horse-radish peroxidase as a tracer. Cell Biol Int Rep 3:747–751

    Article  CAS  PubMed  Google Scholar 

  • Graeber MB, Streit WJ, Kiefer R, Schoen SW, Kreutzberg GW (1990) New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. J Immunol 27:121–132

    CAS  Google Scholar 

  • Greenwood J, Hazell AS, Luthert PJ (1989) The effect of a low pH saline perfusate upon the integrity of the energy-depleted rat blood-brain barrier. J Cereb Blood Flow Metab 9:234–242

    Article  CAS  PubMed  Google Scholar 

  • Groothuis DR, Molnar P, Blasberg RG (1984) Regional blood flow and blood-to- tissue transport in five brain tumor models. Prog Exp Tumor Res 27:132–153

    CAS  PubMed  Google Scholar 

  • Hardy J A, Mann DMA, Wester P, Winblad B (1986) An interactive hypothesis concerning the pathogenesis and progression of Alzheimer’s disease. Neurobiol Aging 7:489–502

    Article  CAS  PubMed  Google Scholar 

  • Hollerhage HG, Gaab MR, Zumkeller M, Walter GF (1988) The influence of nimodipine on cerebral blood flow autoregulation and blood-brain barrier. J Neurosurg 69:919–922

    Article  CAS  PubMed  Google Scholar 

  • Hossmann K-A, Olsson Y (1971) Influence of ischaemia on the passage of protein tracers across capillaries in certain blood-brain barrier injuries. Acta Neuropathol (Berl) 18:113–122

    Article  CAS  Google Scholar 

  • Ikuta F, Yoshida Y, Ohama E, Oyanagi K, Takeda S, Yamazaki K, Watabe K (1983) Revised pathophysiology on BBB damage: the edema as an ingeniously provided condition for cell motility and lesion repair. Acta Neuropathol (Berl) [Suppl] 8:103–110

    Article  CAS  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257

    Article  CAS  PubMed  Google Scholar 

  • Joo F (1987) A unifying concept on the pathogenesis of brain oedemas. Neuropathol Appl Neurobiol 13:161–176

    Article  CAS  PubMed  Google Scholar 

  • Kajiwara K, Ito H, Fukumoto T (1990) Lymphocyte infiltration into normal rat brain following hyperosmotic blood-brain barrier opening. J Immunol 27:133–140

    CAS  Google Scholar 

  • Kalaria RN, Grahovac I (1990) Serum amyloid P immunoreactivity in hippocampal tangles, plaques and vessels: implications for leakage across the blood-brain barrier in Alzheimer’s disease. Brain Res 516:349–353

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Sugihara J, Nakamura T, Muto Y (1989) Electron microscopic study of the blood-brain barrier in rats with brain edema and encephalopathy due to acute hepatic failure. Gastroenterol Jpn 24:135–142

    CAS  PubMed  Google Scholar 

  • Kent TA, McKendall RR (1988) The effect of modification of the blood-brain barrier to immunoglobulin in the course of herpes simplex myelitis. Ann NY Acad Sci 529:272–274

    Article  Google Scholar 

  • Klatzo I (1987) Pathophysiological aspects of brain edema. Acta Neuropathol (Berl) 72:236–239

    Article  CAS  Google Scholar 

  • Koenig H, Goldstone AD, Lu CY, Trout JJ (1989) Polyamines and Ca2+ mediate hyperosmolal opening of the blood-brain barrier: in vitro studies in isolated rat cerebral capillaries. J Neurochem 52:1135–1142

    Article  CAS  PubMed  Google Scholar 

  • Kohn S, Front D, Nir I (1989) Blood-brain barrier permeability of human gliomas as determined by quantitation of cytoplasmic vesicles of the capillary endothelium and scintigraphic findings. Cancer Invest 7:313–321

    Article  CAS  PubMed  Google Scholar 

  • Kondo A, Inoue T, Nagara H, Tateishi J, Fukui M (1987) Neurotoxicity of adriamycin passed through the transiently disrupted blood-brain barrier by mannitol in the rat brain. Brain Res 412:73–83

    Article  CAS  PubMed  Google Scholar 

  • Kontos HA, Wei EP (1986) Superoxide production in experimental brain injury. J Neurosurg 64:803–807

    Article  CAS  PubMed  Google Scholar 

  • Krum JM, Rosenstein JM (1989) The fine structure of vascular-astroglial relations in transplanted fetal neocortex. Exp Neurol 103:203–212

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Harvey SA, Kester M, Hanahan DJ, Olson MS (1988) Production and effects of platelet-activating factor in the rat brain. Biochim Biophys Acta 963:375–383

    CAS  PubMed  Google Scholar 

  • Kuroiwa T, Ting P, Martinez H, Klatzo I (1985) The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol (Berl) 68:122–129

    Article  CAS  Google Scholar 

  • Kuroiwa T, Shibutani M, Okeda R (1988) Blood-brain barrier disruption and exacerbation of ischemic brain edema after restoration of blood flow in experimental focal cerebral ischemia. Acta Neuropathol (Berl) 76:62–70

    Article  CAS  Google Scholar 

  • Levin VA, Freeman-Dove M, Landahl HD (1975) Permeability characteristics of brain adjacent to tumors in rats. Arch Neurol 32:785–791

    CAS  PubMed  Google Scholar 

  • Lo WD, Ennis SR, Goldstein GW, McNeely DL, Betz AL (1987) The effects of galactosamine-induced hepatic failure upon blood-brain barrier permeability. Hepatology 7:452–456

    Article  CAS  PubMed  Google Scholar 

  • Long DM (1970) Capillary ultrastructure and the blood-brain barrier in human malignant brain tumors. J Neurosurg 32:127–144

    Article  CAS  PubMed  Google Scholar 

  • Lossinsky AS, Moretz RC, Carp RI, Wisniewski HM (1987) Ultrastructural observations of spinal cord lesions and blood-brain barrier changes in scrapie- infected mice. Acta Neuropathol (Berl) 73:43–52

    Article  CAS  Google Scholar 

  • Lossinsky AS, Song MJ, Wisniewski HM (1989) High voltage electron microscopic studies of endothelial cell tubular structures in the mouse blood-brain barrier following brain trauma. Acta Neuropathol (Berl) 77:480–488

    Article  CAS  Google Scholar 

  • Luthert PJ, Lantos PL (1985) A morphometric study of the microvasculature of a rat glioma. Neuropathol Appl Neurobiol 11:461–473

    Article  CAS  PubMed  Google Scholar 

  • Luthert PJ, Greenwood J (1990) Experimental studies and the blood-brain barrier. In: Capildeo R (ed) Steroids in disease of the central nervous system. Wiley, Chichester

    Google Scholar 

  • Luthert PJ, Greenwood J, Lantos PL, Pratt OE (1986) The effect of dexamethasone on vascular permeability of experimental brain tumours. Acta Neuropathol (Berl) 69:288–294

    Article  CAS  Google Scholar 

  • Luthert PJ, Greenwood J, Pratt OE, Lantos PL (1987) The effect of a metabolic inhibitor upon the properties of the cerebral vasculature during a whole-head saline perfusion of the rat. Q J Exp Physiol 72:129–141

    CAS  PubMed  Google Scholar 

  • MacKenzie ET, Scatton B (1987) Cerebral circulatory and metabolic effects of perivascular neurotransmitters. CRC Crit Rev Clin Neurobiol 2:357–419

    CAS  PubMed  Google Scholar 

  • Magnoni MS, Frattola L, Piolti R, Govini S, Kobayashi H, Trabucchi M (1988) Glial brain tumors lack microvascular adrenergic receptors. Eur Neurol 28:27–29

    Article  CAS  PubMed  Google Scholar 

  • Marton LJ, Heby O, Levin VA, Lubich WP, Crofts DC, Wilson CB (1976) The relationship of polyamines in cerebrospinal fluid to the presence of central nervous system tumors. Cancer Res 36:973–977

    CAS  PubMed  Google Scholar 

  • Martz D, Beer M, Betz AL (1990) Dimethylthiourea reduces ischemic brain edema without affecting cerebral blood flow. J Cereb Blood Flow Metab 10:352- 357

    Article  CAS  PubMed  Google Scholar 

  • Masters CL, Beyreuther KT (1989) The pathology of the amyloid precursor of Alzheimer’s disease. Ann Med 21:89–90

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K, Berliner JA, Cancilla PA (1987) Induction of gamma-glutamyl transpeptidase in cultured cerebral endothelial cells by a product released by astrocytes. Brain Res 410:309–314

    Article  CAS  PubMed  Google Scholar 

  • Maxwell WL, Irvine A, Adams JH, Graham DI, Gennarelli TA (1988) Response of cerebral microvasculature to brain injury. J Pathol 155:327–335

    Article  CAS  PubMed  Google Scholar 

  • Nag S (1986) Cerebral endothelial plasma membrane alterations in acute hypertension. Acta Neuropathol (Berl) 70:38–43

    Article  CAS  Google Scholar 

  • Nag S, Harik SI (1987) Cerebrovascular permeability to horseradish peroxidase in hypertensive rats: effects of unilateral locus coeruleus lesion. Acta Neuropathol (Berl) 73:247–253

    Article  CAS  Google Scholar 

  • Nagy Z, Pettigrew KD, Meiselman S, Brightman MW (1988) Cerebral vessels eryofixed after hyperosmosis or cold injury in normothermic and hypothermic frogs. Brain Res 440:315–327

    Article  CAS  PubMed  Google Scholar 

  • Neuwelt EA, Specht HD, Hill SA (1986) Permeability of human brain tumor to 99mTc-gluco-heptonate and 99mTc-albumin. Implications for monoclonal antibody therapy. J Neurosurg 65:194–198

    Article  CAS  PubMed  Google Scholar 

  • Nir I, Levanon D, Iosilevsky G (1989) Permeability of blood vessels in experimental gliomas: uptake of 99mTc-glucoheptonate and alteration in blood-brain barrier as determined by cytochemistry and electron microscopy. Neurosurgery 25: 523–31

    Article  CAS  PubMed  Google Scholar 

  • Nishio S, Ohta M, Abe M, Kitamura K (1983) Microvascular abnormalities in ethylnitrosourea (ENU)-induced rat brain tumors: structural basis for altered blood-brain barrier function. Acta Neuropathol (Berl) 59:1–10

    Article  CAS  Google Scholar 

  • O’Neill C, Fowler CJ, Winblad B (1989) Alpha 1-adrenergic receptor binding sites in postmortal human cerebral microvessel preparations: preservation in multi- infarct dementia and dementia of the Alzheimer type. J Neurol Transm 1:308–310

    Google Scholar 

  • Olesen SP (1986) Rapid increase in blood-brain barrier permeability during severe hypoxia and metabolic inhibition. Brain Res 368:24–29

    Article  CAS  PubMed  Google Scholar 

  • Olsson Y, Sharma HS, Pettersson CAV (1990) Effects of p-chlorophenylalanine on microvascular permeability changes in spinal cord trauma. Acta Neuropathol (Berl) 79:595–603

    Article  CAS  Google Scholar 

  • Panther LA, Baumbach GL, Bigner DD, Piegors D, Groothuis DR, Heistad DD (1985) Vasoactive drugs produce selective changes in flow to experimental brain tumors. Arch Neurol 18:712–715

    Article  CAS  Google Scholar 

  • Pires MM, Pilkington GJ, Lantos PL (1987) Vascular permeability in transplantable murine gliomas: morphological correlation with tracer studies. Neuropathol Appl Neurobiol 12:251–262

    Article  Google Scholar 

  • Raff MC, Ffrench-Constant C, Miller RH (1987) Glial cells in the rat optic nerve and some thoughts on remyelination in the mammalian CNS. J Exp Biol 132:35–41

    CAS  PubMed  Google Scholar 

  • Reichman HR, Farrell CL, del Maestro RF (1986) Effects of steroids and nonsteroid anti-inflammatory agents on vascular permeability in a rat glioma model. J Neurosurg 65:233–237

    Article  CAS  PubMed  Google Scholar 

  • Remler MP, Marcussen WH (1986) Systemic focal epileptogenesis. Epilepsia 27: 35–42

    Article  CAS  PubMed  Google Scholar 

  • Rozemuller JM, Eikelenboom P, Kamphorst W, Stam FC (1988) Lack of evidence for dysfunction of the blood-brain barrier in Alzheimer’s disease: an immunohistochemical study. Neurobiol Aging 9:383–391

    Article  CAS  PubMed  Google Scholar 

  • Sehackert G, Simmons RD, Buzbee TM, Hume DA, Fidler IJ (1988) Macrophage infiltration into experimental brain metastases: occurrence through an intact blood-brain barrier. JNCI 80:1027–1034

    Google Scholar 

  • Scheibel AB, Duong T (1988) On the possible relationship of cortical microvascular pathology to blood-brain barrier changes in Alzheimer’s disease. Neurobiol Aging 9:41–42

    Article  CAS  PubMed  Google Scholar 

  • Schlageter NL, Carson RE, Rapoport SI (1987) Examination of blood-brain barrier permeability in dementia of Alzheimer type with [68Ga] EDTA and positron emission tomography. J Cereb Blood Flow Metab 7:1–8

    Article  CAS  PubMed  Google Scholar 

  • Schurer L, Temesvari P, Wahl M, Unterberg A, Baethmann A (1989) Blood-brain barrier permeability and vascular reactivity to bradykinin after pretreatment with dexamethasone. Acta Neuropathol (Berl) 77:576–581

    Article  CAS  Google Scholar 

  • Seida M, Wagner HG, Vass K, Klatzo I (1988) Effect of aminophylline on postischemic edema and brain damage in cats. Stroke 19:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Seitz RJ, Wechsler W (1987) Immunohistochemical demonstration of serum proteins in human cerebral gliomas. Acta Neuropathol (Berl) 73:145–152

    Article  CAS  Google Scholar 

  • Sharma HS (1987) Effect of Captopril (a converting enzyme inhibitor) on blood- brain barrier permeability and cerebral blood flow in normotensive rats. Neuropharmacology 26:85–92

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Dey PK (1987) Influence of long-term acute heat exposure on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. Brain Res 424:153–162

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Dey PK (1988) EEG changes following increased blood-brain barrier permeability under long-term immobilization stress in young rats. Neurosci Res 5:224–239

    Article  CAS  PubMed  Google Scholar 

  • Sokrab TE, Johansson BB, Tengvar C, Kalimo H, Olsson Y (1988) Adrenaline- induced hypertension: morphological consequences of the blood-brain barrier disturbance. Acta Neurol Scand 77:387–396

    Article  CAS  PubMed  Google Scholar 

  • Sørensen SC (1974) The permeability to small ions of tight junctions between cerebral endothelial cells. Brain Res 70:174–178

    Article  PubMed  Google Scholar 

  • Stewart PA, Hayakawa K, Hayakawa E, Farrell CL, del Maestro RF (1985) A quantitative study of blood-brain barrier permeability ultrastructure in a new rat glioma model. Acta Neuropathol (Berl) 67:96–102

    Article  CAS  Google Scholar 

  • Stewart PA, Magliocco M, Hayakawa K, Farrell CL, del Maestro RF, Girvin J, Kaufmann JC, Vinters HV, Gilbert J (1987a) A quantitative analysis of blood- brain barrier ultrastructure in the aging human. Microvasc Res 33:270–282

    Article  CAS  PubMed  Google Scholar 

  • Stewart PA, Hayakawa K, Farrell CL, del Maestro RF (1987b) Quantitative study of micro vessel ultrastructure in human peritumoral brain tissue. Evidence for a blood-brain barrier defect. J Neurosurg 67:697–705

    Article  CAS  PubMed  Google Scholar 

  • Strausbaugh LJ (1987) Intracarotid infusions of protamine sulfate disrupt the blood- brain barrier of rabbits. Brain Res 409:221–226

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Iwasaki Y, Yamamoto T, Konno H, Kudo H (1988) Sequelae of the osmotic blood-brain barrier opening in rats. J Neurosurg 69:421–428

    Article  CAS  PubMed  Google Scholar 

  • Tao-Cheng JH, Nagy Z, Brightman MW (1990) Astrocytic orthogonal arrays of intramembranous particle assemblies are modulated by brain endothelial cells in vitro. J Neurocytol 19:143–153

    Article  CAS  PubMed  Google Scholar 

  • Unterberg A, Dautermann C, Baethmann A, Muller-Esterl W (1986) The kallikrein- kinin system as mediator in vasogenic brain edema. III. Inhibition of the kallikrein-kinin system in traumatic brain swelling. J Neurosurg 64:269–276

    Article  CAS  PubMed  Google Scholar 

  • Unterberg A, Wahl M, Hammersen F, Baethmann A (1987) Permeability and vasomotor response of cerebral vessels during exposure to arachidonic acid. Acta Neuropathol (Berl) 73:209–219

    Article  CAS  Google Scholar 

  • Unterberg A, Wahl M, Baethmann A (1988) Effects of free radicals on permeability and vasomotor response of cerebral vessels. Acta Neuropathol (Berl) 76:238- 244

    Article  CAS  Google Scholar 

  • Vesely R, Hoffman WE, Gil KS, Albrecht RF, Miletich DJ (1987) The cerebrovascular effects of curare and histamine in the rat. Anesthesiology 66:519–523

    Article  CAS  PubMed  Google Scholar 

  • Vezzani A, Stasi MA, Wu HQ, Castiglioni M, Weckermann B, Samanin R (1989) Studies on the potential neurotoxic and convulsant effects of increased blood levels of quinolinic acid in rats with altered blood-brain barrier permeability. Exp Neurol 106:90–98

    Article  CAS  PubMed  Google Scholar 

  • Vick NA, Khandekar JD (1977) Chemotherapy of brain tumors. The “blood-brain barrier” is not a factor. Arch Neurol 34:523–526

    CAS  PubMed  Google Scholar 

  • Villacara A, Spatz M, Dodson RF, Corn C, Bembry J (1989) Effect of arachidonic acid on cultured cerebromicrovascular endothelium: permeability, lipid peroxidation and membrane “fluidity”. Acta Neuropathol (Berl) 78:310–316

    Article  CAS  Google Scholar 

  • Vincent S, DePace D, Finkelstein S (1988) Distribution of anionic sites on the capillary endothelium in an experimental brain tumor model. Microcirc Endothelium Lymphatics 4:45–67

    CAS  PubMed  Google Scholar 

  • Vorbrodt AW (1989) Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J Neurocytol 18:359–368

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Foy M, Cox S (1977) The development and ultrastructure of the microvasculature in malignant gliomas. Neuropathol Appl Neurobiol 3:307–322

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luthert, P.J. (1992). Opening of the Barrier in Cerebral Pathology. In: Bradbury, M.W.B. (eds) Physiology and Pharmacology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76894-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76894-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76896-5

  • Online ISBN: 978-3-642-76894-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics