Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 103))

Abstract

The state of development of “the” blood-brain barrier in the immature brain remains a muddled and rather contentious matter, in spite of many decades of study. This is probably mainly because of a rather general preconception that a barrier present in the adult brain would necessarily be immature or absent in the fetal brain. For example, Barcroft (1938) used the following teleological argument: “There is no reason why the brain of the embryo should require an environment of very great chemical constancy. It will of course require a certain minimum of the various materials necessary for growth, but otherwise on first principles we must suppose that the good things of the life may exist in and may vary in the foetal blood to an extent much greater than in the maternal.” This misconception is compounded by the fact that the term “blood-brain barrier” has come to describe a wide range of barrier mechanisms that contribute to the overall control of the stable internal environment of the adult brain. Often the term is used without clear specification of which barriers are being considered. Some of these barriers are undoubtedly immature in the developing brain. However, the original (and in many ways the fundamental) blood-brain barrier which was first described is the barrier that excludes or largely excludes protein in the blood from entering the brain and cerebrospinal fluid (CSF). It is formed very early indeed during brain development. Probably, as will be discussed in Sect. B this occurs as the vessels first penetrate into the brain substance (blood-brain barrier) and as the choroid plexus epithelial cells first differentiate (blood-CSF barrier).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BUI:

Brain uptake index

cAMP:

Cyclic adenosine monophosphate

CSF:

Cerebrospinal fluid

ECF:

Extracellular fluid

HRP:

Horseradish peroxidase

P:

Postnatal age in days

E:

Embryonic age in days

CRL:

Crown — rump length

IP:

Intraperitoneal

IV:

Intravenous

References

  • Abbott NJ, Revest PA (1991) Control of brain endothelial permeability. Cerebrovasc Brain Metab Rev 3:39–72

    CAS  PubMed  Google Scholar 

  • Adinolfi M, Haddad SA (1977) Levels of plasma proteins in human and rat fetal CSF and the development of the blood-CSF barrier. Neuropädiatrie 8:345–353

    CAS  PubMed  Google Scholar 

  • Amtorp O (1976) Transfer of I125 albumin from blood into brain and cerebrospinal fluid in newborn and juvenile rats. Acta Physiol Scand 96:399–406

    CAS  PubMed  Google Scholar 

  • Amtorp O, Sørensen SC (1974) The ontogenetic development of concentration differences for protein and ions between plasma and cerebrospinal fluid in rabbits and rats. J Physiol (Lond) 243:387–400

    CAS  Google Scholar 

  • Arthur FE, Shivers RR, Bowman PD (1987) Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Dev Brain Res 36:155–159

    Google Scholar 

  • Ästrom KE (1967) On the early development of the isocortex in fetal sheep. Prog Brain Res 26:1–59

    PubMed  Google Scholar 

  • Bakay L (1953) Studies on blood-brain barrier with radioactive phosphorus. III. Embryonic development of the barrier. Arch Neurol Psychiatry 70:30–39

    CAS  Google Scholar 

  • Baños G, Daniel PM, Pratt OE (1978) The effect of age upon the entry of some amino acids into the brain, and their incorporation into cerebral protein. Dev Med Child Neurol 20:335–346

    PubMed  Google Scholar 

  • Barcroft J (1938) The Brain and its Environment. Yale University Press, New Haven

    Google Scholar 

  • Bass NH, Lundborg P (1973) Postnatal development of bulk flow in the cerebrospinal fluid system of the albino rat: clearance of carboxyl [14C] inulin after intrathecal infusion. Brain Res 52:323–332

    CAS  PubMed  Google Scholar 

  • Behensen G (1927) Über die Farbstoffspeicherung in Zentralnervensystem der weißen Maus in verschiedenen Alterszuständen. Z Zellforsch 4:515–572

    Google Scholar 

  • Betz AL, Goldstein GW (1981) Developmental changes in metabolism and transport of properties of capillaries isolated from rat brain. J Physiol (Lond) 312:365–376

    CAS  Google Scholar 

  • Birge WJ, Rose AD, Haywood JR, Doolin PF (1974) Development of the blood- cerebrospinal fluid barrier to proteins and differentiation of cerebrospinal fluid in the chick embryo. Dev Biol 41:245–254

    CAS  PubMed  Google Scholar 

  • Bito LZ, Myers RE (1970) The ontogenesis of haematoencephalic cation transport processes in the rhesus monkey. J Physiol (Lond) 208:153–170

    CAS  Google Scholar 

  • Bloch B, Popovici T, Levin MJ, Tuil D, Kahn A (1985) Transferrin gene expression visualized in oligodendrocytes of the rat brain by using in situ hybridization and immunohistochemistry. Proc Natl Acad Sci USA 82:6706–6710

    CAS  PubMed  Google Scholar 

  • Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW (1983) Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 14:396–402

    CAS  PubMed  Google Scholar 

  • Boyd RDH, Haworth C, Stacey TE, Ward RHT (1976) Permeability of the sheep placenta to unmetabolized polar non-electrolytes. J Physiol (Lond) 256:617–634

    CAS  Google Scholar 

  • Bradbury MWB (1979) The concept of a blood-brain barrier. Wiley, Chichester

    Google Scholar 

  • Bradbury MWB, Crowder J, Desai S, Reynolds JM, Reynolds ML, Saunders NR (1972) Electrolytes and water in the brain and cerebrospinal fluid of the foetal sheep and guinea-pig. J Physiol (Lond) 227:591–610

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Braun LD, Cornford EM, Oldendorf WH (1980) Newborn rabbit blood-brain barrier is selectively permeable and differs substantially from the adult. J Neurochem 34:147–152

    CAS  PubMed  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    CAS  PubMed  Google Scholar 

  • Broadwell RD, Charlton HM, Ebert PS, Hickey WF, Shirazi Y, Villegas J, Wolf AL (1991) Allografts of CNS tissue possess a blood-brain barrier. II. Angiogenesis in solid tissue and cell suspension grafts. Exp Neurol 112:1–28

    CAS  PubMed  Google Scholar 

  • Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol (Lond) 429:47–62

    CAS  Google Scholar 

  • Caley WD, Maxwell DS (1970) Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex. J Comp Neurol 138:31–48

    CAS  PubMed  Google Scholar 

  • Carnan E, Gillespie JI (1988) The formation of intra-ventricular fluid in the developing nervous system of the early chick embryo. J Physiol (Lond) 403: 66P

    Google Scholar 

  • Cavanagh ME, Warren A (1985) The distribution of native albumin and foreign albumin injected into lateral ventricles of prenatal and neonatal rat forebrains. Anat Embryol (Berl) 172:345–351

    CAS  Google Scholar 

  • Claude P, Goodenough D (1973) Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58:390–400

    CAS  PubMed  Google Scholar 

  • Connor JE, Fine RE (1986) The distribution of transferrin immunoreactivity in the rat central nervous system. Brain Res 368:319–328

    CAS  PubMed  Google Scholar 

  • Cornford EM, Braun LD, Oldendorf WH (1982a) Developmental modulations of blood-brain barrier permeability as an indicator of changing nutritional requirements in the brain. Pediatr Res 16:324–328

    CAS  PubMed  Google Scholar 

  • Cornford EM, Braun LD, Oldendorf WH (1982b) Age-related alterations in blood- brain barrier penetration of diphenylhydantoin. In: Akimoto H, Kazamatsuri H, Seino M, Ward A (eds) Advances in epileptology. 13th Epilepsy International Symposium. Raven, New York, pp 285–288

    Google Scholar 

  • Davson H (1967) Physiology of the cerebrospinal fluid. Churchill, London

    Google Scholar 

  • Davson H (1989) History of the blood-brain barrier concept. In: Neuwelt EA (ed) Implications of the blood-brain barrier and its manipulation. Plenum, New York, pp 27–52

    Google Scholar 

  • Davson H, Welch K, Segal MB (1987) The physiology and pathophysiology of the cerebrospinal fluid. Livingstone, Edinburgh

    Google Scholar 

  • Dehouck M-P, Meresse S, Delorme P, Torpier G, Fruchart J-C, Cecchelli R (1990) The blood-brain barrier in vitro: co-culture of brain capillary endothelial cells and astrocytes. Circ Metab Cerveau 7:151–162

    Google Scholar 

  • Delorme P, Gayet J, Grignon G (1970) Ultrastructural study on transcapillary exchanges in the developing telencephalon of the chicken. Brain Res 22: 269–283

    CAS  PubMed  Google Scholar 

  • Desmond ME, Jacobsen AG (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 57:188–198

    CAS  PubMed  Google Scholar 

  • Dobbing J (1969) The development of the blood-brain barrier. Progr Brain Res 29:417–425

    Google Scholar 

  • Dreosti IE (1984) Zinc in the central nervous system: the emerging interactions. In: Fredrickson CJ, Howell GA, Kasarkis EJ (eds) The neurobiology of zinc, Liss, New York, pp 1–26

    Google Scholar 

  • Dziegielewska KM (1982) Proteins in fetal CSF and plasma. PhD thesis, University of London

    Google Scholar 

  • Dziegielewska KM, Saunders NR (1988) The development of the blood-brain barrier: proteins in fetal and neonatal CSF, their nature and origins. In: Meisami E, Timiras PJ (eds) Handbook of human growth and developmental biology, vol 1A. CRC, Boca Raton, pp 169–191

    Google Scholar 

  • Dziegielewska KM, Saunders NR (1991) The internal environment of the developing brain. In: Mednick SA (ed) Developmental neuropathology of schizophrenia. Plenum, New York (NATO ASI series) (in press)

    Google Scholar 

  • Dziegielewska KM, Evans CAN, Malinowska DH, M0llgärd K, Reynolds JM, Reynolds ML, Saunders NR (1979) Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J Physiol (Lond) 292: 207–231

    Google Scholar 

  • Dziegielewska KM, Evans CAN, Malinowska DH, Møllgård K, Reynolds ML, Saunders NR (1980) Blood-cerebrospinal fluid transfer of plasma proteins during fetal development in the sheep. J Physiol (Lond) 300:457–465

    CAS  Google Scholar 

  • Dziegielewska KM, Evans CAN, Lai PCW, Lorscheider FL, Malinowska DH, Møllgård K, Saunders NR (1981) Proteins in cerebrospinal fluid and plasma of fetal rats during development. Dev Biol 83:193–200

    CAS  PubMed  Google Scholar 

  • Dziegielewska KM, Møllgård K, Reynolds ML, Saunders NR (1987) A fetuin- related glycoprotein (a2HS) in embryonic and fetal development. Cell Tissue Res 248:33–41

    CAS  PubMed  Google Scholar 

  • Dziegielewska KM, Hinds LA, Møllgård K, Reynolds ML, Saunders NR (1988) Blood-brain, blood-cerebrospinal fluid and cerebrospinal fluid-brain barriers in a marsupial (Macropus eugenii) during development. J Physiol (Lond) 403: 367–388

    CAS  Google Scholar 

  • Dziegielewska KM, Habgood MD, Jones SE, Reader M, Saunders NR (1989) Proteins in cerebrospinal fluid and plasma of postnatal Monodelphis domestica (grey short-tailed opossum). Comp Biochem Physiol [B] 92:569–576

    CAS  Google Scholar 

  • Dziegielewska KM, Habgood MD, Saunders NR, Sedge wick JE (1990) A specific albumin transfer mechanism at the blood-CSF barrer in the rat. J Physiol (Lond) 423:35P

    Google Scholar 

  • Dziegielewska KM, Habgood MD, Møllgård K, Stagaard M, Saunders NR (1991) Species specific transfer of plasma albumin from blood into different cerebrospinal fluid compartments in the immature fetal sheep. J Physiol 439:215–237

    CAS  PubMed  Google Scholar 

  • Dziegielewska KM, Matthews N, Møllgård K, Saunders NR (1992) Zinc binding globulin a passive marker for blood-brain carrier permeability in the human fetal brain. J Physiol 446, 6069

    Google Scholar 

  • Ehrlich P (1885) Das Sauerstoff-Bedürfnis des Organismus. Eine farbenanalytishche Studie. Hirschwald, Berlin, pp 69–72

    Google Scholar 

  • Evans CAN, Reynolds JM, Reynolds ML, Saunders NR, Segal MB (1974) The development of a blood-brain barrier mechanism in foetal sheep. J Physiol (Lond) 238:371–386

    CAS  Google Scholar 

  • Evans CAN, Reynolds JM, Reynolds ML, Saunders NR (1976) The effect of hypercapnia on a blood-brain barrier mechanism in foetal and newborn sheep. J Physiol (Lond) 255:701–714

    CAS  Google Scholar 

  • Felgenhauer K (1974) Protein size and cerebrospinal fluid composition. Klin Wochenschr 52:1158–1164

    CAS  PubMed  Google Scholar 

  • Ferguson RK, Woodbury DM (1969) Penetration of 14C-inulin and 14C-sucrose into brain, cerebrospinal fluid and skeletal muscle of developing rats. Exp Brain Res 7:181–194

    CAS  PubMed  Google Scholar 

  • Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE (1987) Receptor- mediated transcytosis of transferrin across the blood-brain barrier. J Neurosci Res 18:299–304

    CAS  PubMed  Google Scholar 

  • Flexner LB (1938) Changes in the chemistry and nature of cerebrospinal fluid during fetal life in the pig. Am J Physiol 124:131–135

    CAS  Google Scholar 

  • Flexner LB, Flexner JB (1949) Biochemical and physiological differentiation during morphogenesis. IX. The extracellular and intracellular phases of the liver and cerebral cortex of the foetal guinea-pig as estimated from distribution of chloride and radiosodium. J Cell Comp Physiol 34:115–127

    CAS  Google Scholar 

  • Fossan G, Cavanagh ME, Evans CAN, Malinowska DH, Møllgård K, Reynolds ML, Saunders NR (1985) CSF-brain permeability in the immature sheep fetus: a CSF-brain barrier. Dev Brain Res 18:113–124

    CAS  Google Scholar 

  • Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    CAS  PubMed  Google Scholar 

  • Giometto B, Bozza F, Argentiero V, Gallo P, Pagni S, Piccinno MG, Tavolato B (1990) Transferrin receptors in rat central nervous system-an immunocytochemical study. J Neurol Sci 98:81–90

    CAS  Google Scholar 

  • Goldberg J, Sheehy EM (1982) Fifth day fits: an acute zinc deficiency syndrome? Arch Dis Child 57:633–635

    CAS  PubMed  Google Scholar 

  • Goldstein GW, Betz AL (1986) Blood vessels and the blood-brain barrier. In: Ashbury AK, McKhann GM, McDonald WI (eds) Diseases of the nervous system, vol 1. W.B. Saunders, Philadelphia, pp 172–184

    Google Scholar 

  • Grazer FM, Clemente CD (1957) Developing blood brain barrier to trypan blue. Proc Soc Exp Biol Med 94:758–760

    CAS  PubMed  Google Scholar 

  • Habgood MD (1989) Blood-CSF barrier permeability in very immature rats. JPhysiol (Lond) 417:31P

    Google Scholar 

  • Habgood MD (1990) Barriers in the developing brain. PhD thesis, University of Southampton

    Google Scholar 

  • Habgood MD, Sinclair JD (1988) The effects of hypercapnia on the transfer of proteins between plasma and CSF in neonatal and adult rats. J Physiol (Lond) 400:47P

    Google Scholar 

  • Hill JM, Switzer RC (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11:595–603

    CAS  PubMed  Google Scholar 

  • Hornig GW, Lorenzo AV, Zavala LM, Welch K (1987) Brain tissue pressure measurements in perinatal and adult rabbits. Z Kinderchir 42, Suppl 1:23–26

    Google Scholar 

  • Huebers HA, Finch CA (1987) The physiology of transferrin and transferring receptors. Physiol Rev 67:520–587

    CAS  PubMed  Google Scholar 

  • Hulsebosch CE, Fabian RH (1989) Penetration of IgGs into the neuraxis of the neonatal rat. Neurosci Lett 98:13–18

    CAS  PubMed  Google Scholar 

  • Hurley LS (1981) Teratogenic aspects of manganese, zinc and copper nutrition. Physiol Rev 61:249–295

    CAS  PubMed  Google Scholar 

  • Jacobsen M, Clausen PP, Jacobsen GK, Saunders NR, Møllgård K (1982a) Intracellular plasma proteins in human fetal choroid plexus during development. Developmental stages in relation to the number of epithelial cells which contain albumin in telencephalic, diencephalic and myelencephalic choroid plexus. Dev Brain Res 3:239–250

    CAS  Google Scholar 

  • Jacobsen M, Jacobsen GK, Clausen PP, Saunders NR, Møllgård K (1982b) Intracellular plasma proteins in human fetal choroid plexus during development. The distribution of prealbumin, albumin, alpha-fetoprotein, transferrin, IgG, IgA, IgM, and Alpharantitrypsin. Dev Brain Res 3:251–262

    CAS  Google Scholar 

  • Jacobsen M, Møllgård K, Reynolds ML, Saunders NR (1983) The choroid plexus in fetal sheep during development with special reference to intracellular plasma proteins. Dev Brain Res 8:77–88

    Google Scholar 

  • Janas MS, Moos T, Møllgård K (1991) Is the differential localization of specific plasma proteins in the developing neo-and archicortex a reflection of differences in trans-barrier transport? Possible implications for the neuropathology of schizophrenia. In: Mednick SA (ed) Developmental neuropathology of schizophrenia. Plenum, New York (NATO ASI series) pp 61–73

    Google Scholar 

  • Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163

    CAS  PubMed  Google Scholar 

  • Johanson CE (1989) Ontogeny of the blood-brain barrier. In: Neuwelt EA (ed) Implications of the blood-brain barrier and its manipulation, vol 1. Plenum, New York, pp 157–198

    Google Scholar 

  • Johanson CE, Woodbury DM (1974) Changes in CSF flow and extracellular space in the developing rat. In: Vernadakis A, Weiner N (eds) Drugs and the developing brain. Plenum, New York, pp 281–287

    Google Scholar 

  • Johanson CE, Reed DJ, Woodbury DM (1974) Active transport of sodium and potassium by the choroid plexus of the rat. J Physiol (Lond) 241:359–372

    CAS  Google Scholar 

  • Johanson CE, Reed DJ, Woodbury DM (1976) Developmental studies of the compartmentalization of water and electrolytes in the choroid plexus of the neonatal rat brain. Brain Res 116:35–48

    CAS  PubMed  Google Scholar 

  • Jones HC, Keep RF (1987) The control of potassium concentration in the cerebrospinal fluid and brain interstitial fluid of developing rats. J Physiol (Lond) 383:441–453

    CAS  Google Scholar 

  • Jones HC, Keep RF (1988) Brain fluid calcium concentration and response to acute hypercalcaemia during development in the rat. J Physiol (Lond) 402:579–593

    CAS  Google Scholar 

  • Jones HC, Deane R, Bucknall RM (1987) Developmental changes in cerebrospinal fluid pressure and resistance to absorption in rats. Dev Brain Res 33:23–30

    Google Scholar 

  • Joó F (1985) The blood-brain barrier in vitro: ten years of research on microvessels isolated from the brain. Neurochem Int 7:1–25

    PubMed  Google Scholar 

  • Kalaria RN, Harik SI (1987) Differential postnatal development of monoamine oxidases A and B in the blood-brain barrier of the rat. J Neurochem 49: 1589–1594

    CAS  PubMed  Google Scholar 

  • Keen CL, Hurley LS (1989) Zinc and reproduction: effects of deficiency on foetal and postnatal development. In: Mills CF (ed) Zinc in human Biology. Springer, Berlin Heidelberg New York, pp 183–220

    Google Scholar 

  • Klosovski BN (1963) The development of the brain and its disturbance by harmful factors. Pergamon, Oxford, p 94

    Google Scholar 

  • Knott G, Dziegielewska KM, Habgood MD, Saunders NR (1991) Species specific blood-CSF transfer of albumins in the grey short-tailed opossum (Monodelphis domestica). Eur J Neurosci Suppl 4:4158

    Google Scholar 

  • Lim BC, McArdle HJ, Morgan EH (1987) Transferrin-receptor interaction and iron uptake by reticulocytes of vertebrate animals - a comparative study. J Comp Physiol 157:363–371

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Møllgård K, Saunders NR (1975) Complex tight junctions of epithelial and of endothelial cells in early foetal brain. J Neurocytol 4:453–468

    Google Scholar 

  • Møllgård K, Saunders NR (1977) A possible transepithelial pathway via endoplasmic reticulum in fetal sheep choroid plexus. Proc R Soc Lond [Biol] 199:321–326

    Google Scholar 

  • Møllgård K, Saunders NR (1986) The development of the human blood-brain and blood-CSF barriers. Neuropathol Appl Neurobiol 12:337–358

    PubMed  Google Scholar 

  • Møllgård K, Malinowska DH, Saunders NR (1976) Lack of correlation between tight junction morphology and permeability properties in developing choroid plexus. Nature 264:293–294

    Google Scholar 

  • Møllgård K, Lauritzen B, Saunders NR (1979) Double replica technique applied to choroid plexus from early foetal sheep: completeness and complexity of tight junctions. J Neurocytol 8:139–149

    PubMed  Google Scholar 

  • Møllgård K, Balslev Y, Lauritzen B, Saunders NR (1987a) Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain: a CSF-brain barrier. J Neurocytol 16:433–444

    PubMed  Google Scholar 

  • Møllgård K, Stagaard M, Saunders NR (1987b) Cellular distribution of transferring immunoreactivity in the developing rat brain. Neurosci Lett 78:35–40

    PubMed  Google Scholar 

  • Møllgård K, Dziegielewska KM, Saunders NR, Zakut H, Soreq H (1988) Synthesis and localization of plasma proteins in the developing human brain. Dev Biol 128:207–221

    PubMed  Google Scholar 

  • Molliver ME, Kostovic I, van der Loos H (1973) The development of synapses in cerebral cortex of the human fetus. Brain Res 50:403–407

    CAS  PubMed  Google Scholar 

  • Nicholls JG, Stewart RR, Erulkar SD, Saunders NR (1990) Reflexes, Active respiration and cell division in the brain and spinal cord of the newborn opossum, Monodelphis domestica, isolated and maintained in vitro. J Exp Biol 152:1–15

    CAS  PubMed  Google Scholar 

  • Olesen SP, Crone C (1983) Electrical resistance of muscle capillary endothelium. Biophys J 42:31–41

    CAS  PubMed  Google Scholar 

  • Olsson Y, Klatzo I, Sourander P, Steinwall O (1968) Blood-brain barrier to albumin in embryonic new born and adult rats. Acta Neuropathol (Berl) 10:117–122

    CAS  Google Scholar 

  • Pardridge WM, Eisenberg J, Yang J (1987) Human blood-brain barrier transferring receptor. Metabolism 26:892–895

    Google Scholar 

  • Pardridge WM, Boado RJ, Farrell CR (1990) Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. J Biol Chem 265:18035–18040

    CAS  PubMed  Google Scholar 

  • Parmalee JT, Johanson CE (1989) Development of potassium transport capability by choroid plexus of infant rats. Am J Physiol 256:R786–R791

    Google Scholar 

  • Peters T Jr (1975) Serum albumin. In: Putnam FW (ed) The plasma proteins, vol 1. Academic, New York, pp 133–183

    Google Scholar 

  • Rapoport SI (1976) Blood-brain barrier in physiology and medicine. Raven, New York

    Google Scholar 

  • Rapoport SI, Pettigrew KD (1979) A heterogenous, pore-vesicle membrane model for protein transfer from blood to cerebrospinal fluid at the choroid plexus. Microvasc Res 18:105–119

    CAS  PubMed  Google Scholar 

  • Reese TS, Karnovsky M J (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    CAS  PubMed  Google Scholar 

  • Reynolds ML, Møllgård K (1985) The distribution of plasma proteins in the neocortex and early allocortex of the developing sheep brain. Anat Embryol (Beri) 171:41–60

    CAS  Google Scholar 

  • Reynolds ML, Cavanagh ME, Dziegielewska KM, Hinds LA, Saunders NR, Tyndale-Biscoe CH (1985) Postnatal development of the telencephalon of the tammar wallaby (Macropus eugenii). Anat Embryol (Beri) 173:81–94

    CAS  Google Scholar 

  • Risau W, Hallman R, Albrecht U (1986) Differentiation-dependent expression of proteins in brain endothelium during development of the blood-brain barrier. Dev Biol 117:537–545

    CAS  PubMed  Google Scholar 

  • Romanoff AL (1967) Biochemistry of the avian embryo, Wiley, New York

    Google Scholar 

  • Roncali L, Nico B, Ribatti D, Bertossi M, Mancini L (1986) Microscopical and ultrastructural investigations on the development of the blood-brain barrier in the chick embryo optic tectum. Acta Neuropathol (Beri) 70:193–201

    CAS  Google Scholar 

  • Rubin LL, Barbu K, Bard F, Cannon C, Hall DE, Horner H, Janatpour M, Liaw C, Manning K, Morales J, Porter S, Tanner L, Tomaselli K, Yednock T (1991) Differentiation of brain endothelial cells in cell culture. Ann NY Acad Sci 633, 420–425

    CAS  PubMed  Google Scholar 

  • Rutten MJ, Hoover RL, Karnovsky MJ (1987) Electrical resistance and macromolecular permeability of brain endothelial monolayer cultures. Brain Res 425:301–310

    CAS  PubMed  Google Scholar 

  • Saunders NR (1992) The development of the blood-brain barrier to macro- molecules. In: Segal MB (ed) The fluids and barriers of the eye and the brain. Macmillan, Basingstoke pp 129–155

    Google Scholar 

  • Saunders NR (1992) Development of the blood-brain barrier and properties of CSF in the developing brain. In: Crockard A, Haywood R, Hoff JT (eds) Neurosurgery, the scientific basis of clinical practice. Blackwell, Oxford pp 22–37

    Google Scholar 

  • Saunders NR, Møllgård K (1984) Development of the blood-brain barrier. J Dev Physiol 6:45–57

    CAS  PubMed  Google Scholar 

  • Saunders NR, Adam E, Reader M, Møllgård K (1989)Monodelphis domestica (grey short-tailed opossum): an accessible model for studies of early neocortical development. Anat Embryol (Beri) 180:227–236

    CAS  Google Scholar 

  • Schwick HG, Haupt H (1981) Purified human plasma proteins of unknown functions. In: Bing DH, Rosenbaum RA (eds) Plasma and cellular modulatory proteins. Centre for Blood Research, Boston

    Google Scholar 

  • Sessa G, Perez MM (1972) Biochemical changes in rat brain associated with the development of the blood-brain barrier. J Neurochem 25:779–782

    Google Scholar 

  • Stastny F (1983) Glucocorticoids and brain development. Avicenum, Prague

    Google Scholar 

  • Stern L, Gautier G (1921) Rapports entre le liquide céphalorachidien et la circulation sanguine. Arch Int Physiol. 17:138–192

    CAS  Google Scholar 

  • Stern L, Gautier G (1922) Les rapports entre le liquide céphalorachidien et les éléments nerveux de l’axe cérébrospinal. Arch Int Physiol 17:391–448

    Google Scholar 

  • Stern L, Peyrot R (1927) Le fonctionnement de la barrière hémato-encéphalique aux divers stades de développement ches les diverses espèces animales. C RSoc Biol (Paris) 96:1124–1126

    Google Scholar 

  • Stern PL, Rapoport JL (1928) Les échanges entre le liquide céphalorachidien et les éléments nerveux cérébro-spinaux. C R Soc Biol (Paris) 98:1518–1519

    CAS  Google Scholar 

  • Stern L, Rapoport JL, Lokschina ES (1929) Le fonctionnement de la barrière hémato-encéphalique chez les nouveau-nés. C R Soc Biol (Paris) 100:231–233

    Google Scholar 

  • Stewart PA, Hayakawa EM (1987) Interendothelial, functional changes underlie the developmental ‘tightening’ of the blood-brain barrier. Dev Brain Res 32:271–281.

    Google Scholar 

  • Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol 84:183–192

    CAS  PubMed  Google Scholar 

  • Stewart RR, Zou DJ, Treherne JM, Møllgård K, Saunders NR, Nicholls JG (1991) The intact nervous system of the newborn oppossum in long-term culture: fine structure and GABA-mediated inhibition of electrical activity. J Exp Biol 161:25–41

    CAS  PubMed  Google Scholar 

  • Tao-Cheng JH, Brightman MW (1988) Development of membrane interactions between brain endothelial cells and astrocytes in vitro. Int J Dev Neurosci 6:25–37

    CAS  PubMed  Google Scholar 

  • Tao-Cheng JH, Nagy Z, Brightman MW (1987) Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci 7:3293–3299

    CAS  PubMed  Google Scholar 

  • Taylor EM, Morgan EH (1990) Developmental changes in transferrin and iron uptake by the brain in the rat. Dev Brain Res 55:35–42

    CAS  Google Scholar 

  • Tschirgi RD (1950) Protein complexes and the impermeability of the blood-brain barrier to dyes. Am J Physiol 163:756

    Google Scholar 

  • Vorbrodt AW, Lossinsky AS, Wisniewski HM (1986) Localization of alkaline phosphatase activity in endothelia of developing and mature mouse blood-brain barrier. Dev Neurosci 8:1–13

    CAS  PubMed  Google Scholar 

  • Wakai S, Hirokawa N (1979) Development of the blood-brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res 195:195–203

    Google Scholar 

  • Wakai S, Hirokawa N (1981) Development of blood-cerebrospinal fluid barrier to horseradish peroxidase in the avian choroidal epithelium. Cell Tissue Res 214:271–278

    CAS  PubMed  Google Scholar 

  • Wislocki GB (1920) Experimental studies on fetal absorption. I. The vitally stained fetus. Contrib Embryol Carnegie Inst 5:45–52

    Google Scholar 

  • Weed LH (1917) The development of the cerebrospinal fluid spaces in pig and man. Contrib Embryol Carnegie Inst 4:41–52

    Google Scholar 

  • Woodbury DM, Johanson C, Brønsted H (1974) Maturation of the blood-brain and blood-cerebrospinal fluid barriers and transport systems. In: Zimmermann E, George R (eds) Narcotics and the hypothalamus. Raven, New York, pp 225–247

    Google Scholar 

  • Xie X, Smart TG (1991) A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature 349:521–524

    CAS  PubMed  Google Scholar 

  • Zeman W, Innés JRM (1963) Craigie’s Neuroanatomy of the rat, Academic, New York, p 45

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saunders, N.R. (1992). Ontogenetic Development of Brain Barrier Mechanisms. In: Bradbury, M.W.B. (eds) Physiology and Pharmacology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76894-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76894-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76896-5

  • Online ISBN: 978-3-642-76894-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics