Skip to main content

Trace Metal Transport at the Blood-Brain Barrier

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 103))

Abstract

A number of trace metals are normally present within the central nervous system (CNS), and may have effects on its function. Several, e.g., zinc, iron, copper and manganese are essential for normal brain development and function. Others, e.g., lead and mercury, have no known essential role, but may be toxic even at low concentrations. Of the essential metals, most may be toxic to the brain at high concentration, e.g., zinc, copper and manganese.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BBB:

Blood-brain barrier

CSF:

Cerebrospinal fluid

DIDS:

4,4′-diisothiocyanostilbene-2,2′-disulphonic acid

EDTA:

Ethylenediaminetetraacetic acid

HEPES:

Hydroxyethylpiperazine ethanesulphonic acid

FCCP:

Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone

References

  • Adu J, Bradbury MWB, Buxani S (1990) 65Zn transport into brain and other soft tissues of the rat. J Physiol (Lond) 423:40P

    Google Scholar 

  • Al-Modhefer AJA, Bradbury MWB, Simons TJB (1990) The chemical state of lead in human blood serum. J Physiol (Lond) 422:56P

    Google Scholar 

  • Blasberg RG, Fenstermacher JD, Patlak CS (1983) Transport of y-aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8–32

    Article  CAS  PubMed  Google Scholar 

  • Bradbury MWB, Deane R (1986) Rate of uptake of lead-203 into brain and other soft tissues of the rat at constant radiotracer levels in plasma. Ann NY Acad Sci 481:142–160

    Article  CAS  PubMed  Google Scholar 

  • Buxani S, Adu J (1991) Histidine-stimulated 65Zn transport at the BBB of the anaesthetized rat. J Physiol (Lond) 438:121P

    Google Scholar 

  • Chitambar CR, Zivkovic Z (1987) Uptake of gallium-67 by human leukemic cells: demonstration of transferrin receptor-dependent and transferrin-independent mechanisms. Cancer Res 47:3929–3934

    CAS  PubMed  Google Scholar 

  • Davson H (1955) A comparative study of the aqueous and cerebrospinal fluid in the rabbit. J Physiol (Lond) 129:111–133

    CAS  Google Scholar 

  • Deane R, Bradbury MWB (1990) Transport of lead-203 at the blood-brain barrier during short cerebrovascular perfusion with esaline in the rat. J Neurochem 54:905–914

    Article  CAS  PubMed  Google Scholar 

  • Evered DC, Lawrenson G (1980) Biological roles of copper. Ciba Found Symp 79

    Google Scholar 

  • Fishman JB, Rubin JB, Handrahan JV, Fine RE (1987) Receptormediated transcytosis of transferrin across the blood-brain barrier. J Neurosci Res 18:299–304

    Article  CAS  PubMed  Google Scholar 

  • Foote JW, Delves HT (1984) Albumin bound and a2-macroglobulin bound zinc concentrations in the sera of healthy adults. J Clin Pathol 37:1050–1054

    Article  CAS  PubMed  Google Scholar 

  • Giroux EL, Henkin RI (1972) Competition for zinc among serum albumin andamino acids. Biochim Biophys Acta 273:64–72

    CAS  PubMed  Google Scholar 

  • Giugliano R, Mill ward DJ (1984) Growth and zinc homeostasis in the severely zinc-deficient rat. Br J Nutr 52:545–560

    Article  CAS  PubMed  Google Scholar 

  • Hallman PS, Perrin DD, Watt AE (1971) The computed distribution of copper (II) and zinc (II) ions among seventeen amino acids in human plasma. Biochem J 11:549–555

    Google Scholar 

  • Harris WR, Keen C (1989) Calculations of the distribution of zinc in a computer model of human serum. J Nutr 119:1677–1682

    CAS  PubMed  Google Scholar 

  • Huebers HA, Finch CA (1987) The physiology of transferrin and transferrin receptors. Physiol Rev 67:520–582

    CAS  PubMed  Google Scholar 

  • Hughes CCW, Lantos PL (1986) Brain capillary endothelial cells in vitro lack surface IgGFc receptors. Neurosci Lett 68:100–106

    Article  CAS  PubMed  Google Scholar 

  • Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163

    Article  CAS  PubMed  Google Scholar 

  • Kalfakakou V, Simons TJB (1990) Anionic mechanisms of zinc uptake across the human red cell membrane. J Physiol (Lond) 421:485–497

    CAS  Google Scholar 

  • Kasarskis EJ (1984) Zinc metabolism in normal and zincdeficient rat brain. Exp Neurol 84:114–127

    Article  Google Scholar 

  • Kivalo P, Virtanen R, Wickstrom K, Wilson M, Pungor E, Horvai G, Toth K (1976) An evaluation of some commercial lead (Il)-selective electrodes. Anal Chim Acta 87:401–409

    Article  CAS  Google Scholar 

  • Luthert PJ, Greenwood J, Pratt OE, Lantos PL (1987) The effect of a metabolic inhibitor upon the properties of the cerebral vasculature during a whole head saline perfusion of the rat. Q J Exp Physiol 72:129–141

    CAS  PubMed  Google Scholar 

  • Magneson GR, Puvathingal JM, Ray WJ (1987) The concentrations of free Mg2+and free Zn2+ in equine blood plasma. J Biol Chem 262:11140–11148

    CAS  PubMed  Google Scholar 

  • Manton WI, Cook JD (1984) High accuracy (stable isotope dilution) measurements of lead in cerebrospinal fluid. Br J Ind Med 41:313–319

    CAS  PubMed  Google Scholar 

  • Martell AE, Smith RM (1974–1989) Critical stability constants, vols 1–6. Plenum, New York

    Google Scholar 

  • Martin RB, Savory J, Brown S, Bertholf RL, Wills MR (1987) Transferrin binding of Al3+ and Fe3+. Clin Chem 33:405–407

    CAS  PubMed  Google Scholar 

  • May PM, Linder PW, Williams DR (1977) Computer simulation of metal-ion equilibria in biofluids: models for the low-molecularweight complex distribution of calcium (II), magnesium (II), manganese (II), iron (III), copper (II), zinc (II) and lead (II) ions in human blood plasma. J Chem Soc Dalton: 588–595

    Google Scholar 

  • May WS, Cuatrecasas F (1985) Transferrin receptor: its biological significance. J Membr Biol 33:205–215

    Google Scholar 

  • Mills CF (1989) Zinc in human biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ohno K, Pettigrew KD, Rapoport SI (1978) Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am J Physiol 235:H299–H307

    CAS  PubMed  Google Scholar 

  • Osterberg R (1971) The initial equilibrium steps in the interactions of bovine plasma albumin and Zn (II) ions. A potentiostatic study. Acta Chem Scand 25:3827–3840

    Article  CAS  PubMed  Google Scholar 

  • Parisi AF, Vallee BL (1970) Isolation of a zinc a2-macroglobulin in human serum. Biochemistry 9:2421–2426

    Article  CAS  PubMed  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Article  CAS  PubMed  Google Scholar 

  • Pratt OE (1985) Continuous-injection methods for the measurement of flux across the blood-brain barrier: the steady-state, initial rate method. In: Marks N, Rodnight R (eds) Methods in neurochemistry, vol 6. Plenum, New York, pp 117–150

    Google Scholar 

  • Pullen RGL, Candy JM, Morris CM, Taylor G, Keith AB, Edwardson JA (1990) Gallium-67 as a potential marker for aluminium transport in rat brain: implications for Alzheimer’s disease. J Neurochem 55:251–259

    Article  CAS  PubMed  Google Scholar 

  • Simons TJB (1985) Influence of lead ions on cation permeability in human red cell ghosts. J Membr Biol 84:61–67

    Article  CAS  PubMed  Google Scholar 

  • Simons TJB (1986) Passive transport and binding of lead by human red blood cells. J Physiol (Lond) 378:267–286

    CAS  Google Scholar 

  • Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247:H484–H493

    CAS  PubMed  Google Scholar 

  • Taylor E, Morgan EH (1990) Developmental changes in transferrin and iron uptake by the brain in the rat. Dev Brain Res 55:35–42

    Article  CAS  Google Scholar 

  • Williams RB, Mills CF (1970) The experimental production of zinc deficiency in the rat. Br J Nutr 24:989–1003

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV, Begley DJ, Djuricic BM, Mitrovic DM (1986) Measurement of solute transport across the blood-brain barrier in the perfused guinea pig brain: method and application to N-methyl-aminoisobutyric acid. J Neurochem 46: 1444–1451

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bradbury, M.W.B. (1992). Trace Metal Transport at the Blood-Brain Barrier. In: Bradbury, M.W.B. (eds) Physiology and Pharmacology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76894-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76894-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76896-5

  • Online ISBN: 978-3-642-76894-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics