Proterozoic and Living Cyanobacteria

  • Andrew H. Knoll
  • Stejepko Golubic

Abstract

The satisfactory systematic and functional interpretation of any fossil requires that its features be comparable to those of living organisms. A conundrum facing paleontologists who study Proterozoic microfossils is that many of the cyanobacteria-like remains that are so abundant in microbial mat assemblages have multiple morphological analogues in the modern biota -organisms that range from oxygenic photoautotrophs (the cyanobacteria) to anaerobic heterotrophs. Interpretation, therefore, requires that careful attention be paid to paleoenvironmental, behavioral, and taphonomic considerations, as well as morphology. Analyses of Proterozoic microfossil populations, including species of Eoentophysalis, Polybessurus, Eohyella, and others, demonstrate how paleobiological interpretation is maximized when careful observations on ancient populations are combined with complementary studies of modern morphological, developmental, and behavioral counterparts living in comparable physical environments.

Keywords

Sulfide Chlorophyll Calcite Shale Dolomite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostidis K, Komarek (1985) Modern approach to the classification system of cyanophytes. 1. Introduction. Arch Hydrobiol Suppl 71 (1, 2):291–302Google Scholar
  2. Awramik SM, Barghoorn ES (1977) The Gunflint micro-biota. Precambrian Res 5: 121–142CrossRefGoogle Scholar
  3. Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint chert. Science 147: 563–577CrossRefGoogle Scholar
  4. Bauld J (1981) Geobiological role of cyanobacterial mats in sedimentary environments: production and preservation of organic matter. BMR J Aust Geol Geophys 6: 307–317Google Scholar
  5. Butterfield NJ, Knoll AH, Swett K (1988) Exceptional preservation of fossils in an Upper Proterozoic shale. Nature (London) 334:424–427CrossRefGoogle Scholar
  6. Cloud PE (1985) Significance of the Gunflint (Precambrian) microflora. Science 148:27–34CrossRefGoogle Scholar
  7. Cohen Y (1984) The Solar Lake cyanobacterial mats: strategies of photosynthetic life under sulfide. In: Cohen Y, Castenholz RW, Halvorson H (eds) Microbial mats: stromatolites. Liss, New York, pp 133–148Google Scholar
  8. Desikachary TV (1959) Cyanophyta. Indian Counc Agric Res, New Delhi, 686 ppGoogle Scholar
  9. Diver WL, Peat CG (1979) On the interpretation and classification of Precambrian organic-walled microfossils. Geology 7:401–404CrossRefGoogle Scholar
  10. Drouet F (1968) Revision of the classification of the Oscilla-toriaceae. Monogr 15 Acad Nat Sci, Philadelphia, 370 ppGoogle Scholar
  11. Drouet F (1978) Revision of the Nostocaceae with constricted trichomes. Beih Nova Hedwegia 57, Cramer, Vaduz, 258 ppGoogle Scholar
  12. Drouet F (1981) Revision of the Stigonemataceae. Beih Nova Hedwigia 66, Cramer, Vaduz, 221 ppGoogle Scholar
  13. Drouet F, Daily W (1956) Revision of the coccoid Myxo-phyceae. Butler Univ Bot Stud 12: 1–218Google Scholar
  14. Fairchild T (1975) The geologic setting and paleobiology of a Late Precambrian stromatolitic microflora from South Australia. PhD. Thesis, Univ Cal, Los AngelesGoogle Scholar
  15. Geitler L (1932) Cyanophyceae. Rabenhorsts Kryptogamen-flora von Deutschland, Österreich, und der Schweiz, vol. 14. Akademische Verlagsgesellschaft, Leipzig, 1196 ppGoogle Scholar
  16. Gerasimerko LM, Krylov IN (1985) Postmortem alterations of cyanobacteria in the algal-bacterial films in the hot springs of Kamchatka. Dokl Akad Nauk SSSR 272: 201–203 (in Russian)Google Scholar
  17. Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592Google Scholar
  18. Golubic S (1976) Taxonomy of extant stromatolite-building cyanophytes. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 127–140CrossRefGoogle Scholar
  19. Golubic S (1980) Early photosynthetic microorganisms and environmental evolution. In: Holmquist R (ed) Life science and space research (COSPAR 18). Pergamon, Oxford, pp101–107Google Scholar
  20. Golubic S (1983) Stromatolites, fossil and Recent: a case history. In: Westbroek P, Jong EW (eds) Biomineraliz-ation and biological metal accumulation. Reidel, Dordrecht, pp 313–326CrossRefGoogle Scholar
  21. Golubic S, Barghoorn ES (1977) Interpretation of microbial fossils with special reference to the Precambrian. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 1–14Google Scholar
  22. Golubic S, Campbell S (1979) Analogous microbial forms in Recent subaerial habitats and in Precambrian cherts: Gloeothece coerulea Geitler and Eosynechococcus moorei Hofmann. Precambrian Res 8:201–217CrossRefGoogle Scholar
  23. Golubic S, Focke JW (1978) Phormidium hendersonii Howe: identity and significance of a modern stromatolite building organism. J Sediment Petrol 48:761–774Google Scholar
  24. Golubic S, Hofmann HJ (1976) Comparison of modern and Mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats. J Paleontol 50: 1074–1082Google Scholar
  25. Golubic S, Knoll AH (1992) Prokaryotes. In: Lipps J (ed) Fossil prokaryotes and protists. Blackwell, Oxford (in press)Google Scholar
  26. Golubic S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The study of trace fossils. Springer, Berlin Heidelberg New York, pp 229–269CrossRefGoogle Scholar
  27. Green JW, Knoll AH, Golubic S, Swett K (1987) Paleobiology of distinctive benthic microfossils from the Upper Proterozoic limestone-dolomite “Series”, East Greenland. Am J Bot 74: 928–940CrossRefGoogle Scholar
  28. Green JW, Knoll AH, Swett K (1988) Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, central East Greenland. J Paleontol 62: 835–852Google Scholar
  29. Green JW, Knoll AH, Swett S (1989) Microfossils from silicified stromatolitic carbonates of the upper Protero zoic Limestone-Dolomite “Series”, central East Greenland. Geol Mag 126:567–585CrossRefGoogle Scholar
  30. Herdman M, Janvier M, Waterbury JB, Rippka R, Stanier RY, Mandel M (1979) Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111:63–71Google Scholar
  31. Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleontol 50: 1040–1073Google Scholar
  32. Horodyski RJ, Donaldson JA (1983) Distribution and significance of microfossils in cherts of the Middle Proterozoic Dismal Lakes Group, District of Mackenzie, Northwest Territories, Canada. J Paleontol 57:271–288Google Scholar
  33. Horodyski RJ, Bloeser B, vonder Haar S (1977) Laminated algal mats from a coastal lagoon, Laguna Mormona, Baja California, Mexico. J Sediment Petrol 47: 680– 696Google Scholar
  34. Knoll AH (1981) Paleoecology of Late Precambrian micro-fossil assemblages. In: Niklas KH (ed) Paleobotany, paleoecology, and evolution, vol 1. Praeger, New York, pp 117–54Google Scholar
  35. Knoll AH (1982) Microfossils from the Late Precambrian Draken Conglomerate, Ny Friesland, Svalbard. J Paleontol 56:755–790Google Scholar
  36. Knoll AH (1989) The paleomicrobiological information in Proterozoic rocks. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. Am Soc Microbiol, Washington DC, pp 469–484Google Scholar
  37. Knoll AH, Bauld J (1989) The evolution of ecological tolerance in prokaryotes. Trans R Soc Edinburgh 80: 209–223CrossRefGoogle Scholar
  38. Knoll AH, Calder S (1983) Microbiotas of the Late Precambrian Ryssö Formation, Nordaustlandet, Svalbard. Palaeontology 26:467–496Google Scholar
  39. Knoll AH, Golubic S (1979) Anatomy and taphonomy of Precambrian algal stromatolite. Precambrian Res 10:115–151CrossRefGoogle Scholar
  40. Knoll AH, Strother PK, Rossi S (1987) Distribution and diagenesis of microfossils from the Lower Proterozoic Duck Creek Dolomite, Western Australia. Precambrian Res 38:257–279CrossRefGoogle Scholar
  41. Knoll AH, Swett K, Burkhardt E (1989) Paleoenviron-mental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen. J Paleontol 63: 129–145Google Scholar
  42. Komarek J, Anagnostidis K (1986) Modern approach to the classification system of cyanophytes. 2. Chroococcales. Arch Hydrobiol Suppl 73,2:157–226Google Scholar
  43. Lachance M-A (1981) Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid-deoxyribo-nucleic acid reassociation. Int J Syst Bacteriol 31: 139–147CrossRefGoogle Scholar
  44. Lanier WP (1986) Approximate growth rates of Early Proterozoic microstromatolites as deduced by biomass productivity. Palaios 1: 525–542CrossRefGoogle Scholar
  45. LeCampion-Alsumard T (1969) Contribution à l’étude des Cyanophycées lithophytes des étages supralittoral et médiolittoral (Région de Marseille). Tethys 1:119–172Google Scholar
  46. LeCampion-Alsumard T (1975) Etude expérimetale de la colonization d’éclats de calcite par les Cyanophycées endolithes marine. Cah Biol Mar 16: 177–185Google Scholar
  47. LeCampion-Alsumard T, Golubic S (1985) Hyella caespitosa Bornet et Flahault and Hyella balani Lehman (Pleurocap-sales, Cyanophyta): a comparative study. Arch Hydrobiol Suppl 71 Algol Stud 38/39:119–148Google Scholar
  48. Lukas KJ, Golubic S (1983) New endolithic cyanophytes from the North Atlantic Ocean: II. Hyella gigas sp. nov. J Phycol 19:129–136CrossRefGoogle Scholar
  49. Mendelson CV, Schopf JW (1982) Proterozoic microfossils from the Sukhaya Tunguska, Shorikha, and Yudoma formations of the Siberian Platform. J Paleontol 56:42– 83Google Scholar
  50. Monty CLV (1976) The origin and development of cryptalgal fabrics. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 193–243CrossRefGoogle Scholar
  51. Muir MD (1976) Proterozoic microfossils from the Amelia Dolomite, McArthur Basin, Northern Territory. Al-cheringa 1: 143–158Google Scholar
  52. Oehler DZ (1978) Microflora of the Middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. Alcheringa 2:269–309CrossRefGoogle Scholar
  53. Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyano-bacterium which lacks thylakoids. Arch Microbiol 100:419–436CrossRefGoogle Scholar
  54. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories, and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  55. Schopf JW (1968) Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. J Paleontol 42:651–688Google Scholar
  56. Schopf JW, Walter MR (1983) Archean microfossils: new evidence of ancient microbes. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Univ Press, Princeton, pp 214–239Google Scholar
  57. Southgate PN (1986) Depositional environment and mechanism of preservation of microfossils, Upper Proterozoic Bitter Springs Formation, Australia. Geology 14: 638– 686CrossRefGoogle Scholar
  58. Stal LJ, Krumbein WE (1985) Isolation and characterization of cyanobacteria from a marine microbial mat. Bot Mar 28:351–365CrossRefGoogle Scholar
  59. Strother PK, Knoll AH, Barghoorn ES (1983) Microorganisms from the Late Precambrian Narrsârssuk Formation, north-western Greenland. Palaeontology 26: 1–32Google Scholar
  60. Summons RG, Powell TG, Boreham CJ (1988) Petroleum geology and geochemistry of the Middle Proterozoic McArthur Group, northern Australia. III. Composition of extractable hydrocarbons. Geochim Cosmochim Acta 51:1747–1762CrossRefGoogle Scholar
  61. Waterbury JB, Stanier RY (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol Rev 42:2–44Google Scholar
  62. Wilmotte A (1988) Growth and morphological variability of six strains of Phormidium cf. ectocarpi Gomont (Cyano-phyceae) cultivated under different temperatures and light conditions. In: Anagnostidis A., Golubic S, Komarek J, Lhodsky O (eds) Cyanphyta. Schweizerbart, Stuttgart, pp 35–46Google Scholar
  63. Woese C (1987) Bacterial evolution. Microbiol Rev 51: 221–271Google Scholar
  64. Zhang Y (1981) Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (Early Sinian: Riphean), Hebei, China. J Paleontol 55:485–506Google Scholar
  65. Zhang Y, Golubic S (1987) Endolithic microfossils (Cyano-phyta) from Early Proterozoic stromatolites, Hebei, China. Acta Micropalaeontol Sin 4: 1–12Google Scholar
  66. Zhang Z (1986) Solar cyclicity in the Precambrian rock record. Palaeontology 29: 101–111Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Andrew H. Knoll
    • 1
  • Stejepko Golubic
    • 2
  1. 1.Botanical MuseumHarvard UniversityCambridgeUSA
  2. 2.Department of BiologyBoston UniversityBostonUSA

Personalised recommendations