Bacterial Sulfate Reduction: Current Status and Possible Origin

  • P. A. Trudinger


Recent studies on the dissimilatory sulfate-reducing bacteria should help in evaluating their role(s) in ancient geochemical events. As a group, the bacteria are versatile, varied and genetically diverse, and can thrive under a wide range of physico-chemical and nutritional conditions. Discoveries of hydrocarbonutilizing sulfate reducers, and of organisms that grow above 80 °C, rebut claims that sulfide formation in, for example, oil fields and Mississippi Valley type environments, must of necessity be abiological. In modern anoxic environments, sulfate-reducing bacteria are responsible for a significant, and in some cases the major part of organic remineralization of organic matter.

Other anaerobic bacteria have been studied that require one or more less oxidized sulfur compound (e.g. thiosulfate, sulfite and elemental sulfur) as a terminal electron acceptor. These compounds are also reduced by some sulfate reducers. Based on this information a possible scenario for the evolution of bacterial sulfate reduction is presented which involves the sequential development of sulfur reduction, thiosulfate/sulfite reduction, anaerobic disproportionation of thiosulfate to sulfide and sulfate, and finally sulfate reduction. Comparative biochemical evidence suggests that sulfate reduction may have arisen in the earliest stages of biological evolution.


Sulfate Reduction Sulfur Isotope Sulfate Reduction Rate Bacterial Sulfate Reduction Econ Geol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach-Richter L, Stetter KO, Woese CR (1987) A possible biochemical missing link among archaebacteria. Nature (London) 327:348–349CrossRefGoogle Scholar
  2. Baas Becking LGM (1925) Studies on the sulfur bacteria. Ann Bot (London) 39:613–650Google Scholar
  3. Badziong W, Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as sole energy source. Arch Microbiol 117:209–214CrossRefGoogle Scholar
  4. Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature (London) 326:891–892CrossRefGoogle Scholar
  5. Bak F, Pfennig N (1987) Chemolithotrophic growth of De sulfovibrìo sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189CrossRefGoogle Scholar
  6. Barghoorn ES, Nichols RI (1961) Sulphate-reducing bacteria and pyritic sediments in Antarctica. Science 134:190CrossRefGoogle Scholar
  7. Bastin ES (1926) A hypothesis of bacterial influence in the genesis of certain sulphide ores. J Geol 34:773–792CrossRefGoogle Scholar
  8. Belkin S, Wirsen CO, Jannasch HW (1985) Biological and abiological sulfur reduction at high temperatures. Appl Environ Microbiol 49: 1057–1061Google Scholar
  9. Biebl H, Pfennig N (1977) Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch Microbiol 112:115–117CrossRefGoogle Scholar
  10. Broda E (1975) The evolution of bioenergetic processes. Revised reprint. Pergamon, Oxford New York, 231 ppGoogle Scholar
  11. Brysch K, Schneider C, Fuchs G, Widdel F (1987) Litho-autrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol 148:264–274CrossRefGoogle Scholar
  12. Cameron EM (1982) Sulphate and sulphate reduction in Early Precambrian oceans. Nature (London) 296:145– 148CrossRefGoogle Scholar
  13. Carothers WW, Kharaka YK (1978) Aliphatic acid anions in oil-field waters and their implications for the origin of natural gas. Bull Am Assoc Petrol Geol 62:2441–2453Google Scholar
  14. Carothers WW, Kharaka YK (1980) Stable carbon isotopes of HCO3” in oil-field waters -implications for the origin of CO2. Geochim Cosmochim Acta 44:323–332CrossRefGoogle Scholar
  15. Chambers LA (1982) sulfur isotope study of a modern intertidal environment and the interpretation of ancient sulfides. Geochim Cosmochim Acta 46:721–728CrossRefGoogle Scholar
  16. Chambers LA, Trudinger PA (1975) Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction? J Bacteriol 123:36–40Google Scholar
  17. Chambers LA, Trudinger PA (1979) Microbiological fractionation of stable sulfur isotopes: a review and critique. Geomicrobiol J 1: 249–293CrossRefGoogle Scholar
  18. Chambers LA, Trudinger PA, Smith JW, Burns MS (1975) Sulfur isotope fractionation during sulfate reduction by dissimilatory sulfate-reducing bacteria. Can J Microbiol 21:1602–1607CrossRefGoogle Scholar
  19. Cypionka H, Pfennig N (1986) Growth yields of Desul-fotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol 143:396–399CrossRefGoogle Scholar
  20. Fauque GD, Barton LL, LeGall J (1980) Oxidative phos-phorylation linked to dissimilatory reduction of elemental sulfur by Desulfovibrio. In: Sulfur in biology. Ciba Found Symp 72. Excerpta Medica, Amsterdam, pp 71– 86Google Scholar
  21. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archae-bacteria growing optimally at 100°C. Arch Microbiol 145:56–61CrossRefGoogle Scholar
  22. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Mani-loff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore LB, Gupte R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of the prokaryotes. Science 209:457–463CrossRefGoogle Scholar
  23. Franzmann PD, Skyring GW, Burton HR, Deprez PP (1988) Sulfate reduction rates and some aspects of the limnology of four lakes and a fjord of the Vestfold Hills, Antarctica. In: Ferris JM, Burton HR, Johnstone GW, Bayly IA (eds) Biology of the Vestfold Hills, Antarctica, Kluwer, Dordrecht, pp 25–33CrossRefGoogle Scholar
  24. Goldhaber MB, Kaplan IR (1980) Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Mar Chem 9:95–143CrossRefGoogle Scholar
  25. Heggie DT, Skyring GW, O’Brien GW, Reimers C, Herczeg A, Moriarty DJW, Burnett WC, Milnes AR (1990) Organic carbon cycling and modern phosphorite formation on the East Australian continental margin: an overview. In: Notholt AJG, Jarvis I (eds) Phosphorite research and development, Geol Soc Spec Publ 52, pp 87–117Google Scholar
  26. Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol J 5: 191–237CrossRefGoogle Scholar
  27. Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sletyr VB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333CrossRefGoogle Scholar
  28. Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov. sp. nov. a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100ºC. Arch Microbiol 149:95–101CrossRefGoogle Scholar
  29. Ishimoto M, Koyama J, Omura T, Nagai Y (1954) Biochemical studies on sulfate-reducing bacteria. III. Sulfate reduction by cell suspensions. J Biochem 41:537–546Google Scholar
  30. Iversen M, Jørgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944–955CrossRefGoogle Scholar
  31. Jannasch HW, Huber R, Belin S, Stetter KO (1988 a) Ther motoga neapolitana sp. nov. of the extremely thermophilic genus Thermogota. Arch Microbiol 150: 103–104CrossRefGoogle Scholar
  32. Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA (1988 b) Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydro-thermal vents. Appl Environ Microbiol 54: 1203–1209Google Scholar
  33. Jørgensen BB (1977) The sulfur cycle in a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22:814–832CrossRefGoogle Scholar
  34. Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. In: Postgate JR, Kelly DP (eds) Sulphur bacteria. R Soc, London, pp 113–131Google Scholar
  35. Jørgensen BB, Cohen Y (1977) Solar Lake (Sinai). 5. The sulfur cycle in benthic cyanobacterial mats. Limnol Oceanogr 22:657–666CrossRefGoogle Scholar
  36. Kaplan IR, Rittenberg SC (1964) Microbiological fractionation of sulfur isotopes. J Gen Microbiol 34:195–212Google Scholar
  37. Kharaka YK, Robinson SW, Law LM, Carothers WW (1984) Hydrogeochemistry of Big Soda Lake, Nevada: an alkaline meromictic desert lake. Geochim Cosmochim Acta 48:823–835CrossRefGoogle Scholar
  38. King HF (1967) The origins and aims of the Baas Becking Laboratory. Miner Depos 2:142–146CrossRefGoogle Scholar
  39. Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143:203– 208CrossRefGoogle Scholar
  40. Kutznetsova VA, Gorlenko VM (1965) Effect of temperature on the development of microorganisms from flooded strata of the Romashkino oil field. Microbiology 34:274-278 (Engl Transl of Microbiologiya 34:329–334)Google Scholar
  41. Laanbroek H, Pfennig N (1981) Oxidation of short-chain fatty acids by sulfate-reducing bacteria in fresh-water and marine sediments. Arch Microbiol 128: 330–335CrossRefGoogle Scholar
  42. Lyons D, Nickless G (1986) The lower oxy-acids of sulphur. In: Nickless G (ed) Inorganic sulphur chemistry. Elsevier, Amsterdam, pp 509–533Google Scholar
  43. Ohmoto H (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol 67:551 -578CrossRefGoogle Scholar
  44. Ollivier B, Cord-Ruwisch R, Hatchikian EC, Garcia JL (1988) Characterization of Desulfovibrio fructovorans sp. nov. Arch Microbiol 149:447–450CrossRefGoogle Scholar
  45. Orr WL (1974) Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation -study of Big Horn Basin Paleozoic oils. Bull Am Assoc Petrol Geol 58:2295–2318Google Scholar
  46. Peck HD (1962) The role of adenosine-5’-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desul-furicans. J. Biol Chem 237:198–203Google Scholar
  47. Peck HD, LeGall J (1982) Biochemistry of dissimilatory sulphate reduction. In: Postgate JR, Kelly DP (eds) Sulphur bacteria. R Soc, London, pp 13–36Google Scholar
  48. Perry EC, Monster J, Reimer T (1971) Sulphur isotopes in Swaziland System barites and the evolution of the Earth’s atmosphere. Science 171: 1015–1016CrossRefGoogle Scholar
  49. Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov. a new anaerobic, sulfur-reducing, acetate-oxidising bacterium. Arch Microbiol 110:3–12CrossRefGoogle Scholar
  50. Pfennig N, Biebl H (1981) The dissimilatory sulfur-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 941–947Google Scholar
  51. Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 926–940Google Scholar
  52. Postgate JR (1951) Reduction of sulfur compounds by Desulphovibrio de sulphuricarns. J Gen Microbiol 5:725–738Google Scholar
  53. Postgate JR (1959) Sulphate reduction by bacteria. Annu Rev Microbiol 13:505–520CrossRefGoogle Scholar
  54. Postgate JR (1984) The sulphate-reducing bacteria. Univ Press, Cambridge, 208 ppGoogle Scholar
  55. Powell TG, Macqueen RW (1984) Precipitation of sulfìde ores and organic matter -sulfate reactions at Pine Point, Canada. Science 224: 63–66CrossRefGoogle Scholar
  56. Reeburgh WS (1980) Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet Sci Lett 47:345–352CrossRefGoogle Scholar
  57. Rees CE (1973) A steady-state model for sulfur isotope fractionation in bacterial reduction reactions. Geochim Cosmochim Acta 37: 1141–1162CrossRefGoogle Scholar
  58. Rickard DT (1973) Limiting conditions for synsedimentary sulfide ore formation. Econ Geol 68:605–617CrossRefGoogle Scholar
  59. Roy AB, Trudinger PA (1970) The biochemistry of inorganic compounds of sulphur. Univ Press, Cambridge, 400 ppGoogle Scholar
  60. Rozanova EP, Khudyakova AI (1974) A new nonsporeforming thermophilic sulfate-reducing bacterium, Desul fovibrio thermophilus nov. spec. Microbiology 43: 1908– 1912 (Engl Transl of Mikrobiologiya 43:1069–1075)Google Scholar
  61. Saslawsky AS, Chait SS (1929) The influence of the concentration of sodium chloride on several biochemical processes in the limnan. Zentralbl Bakteriol Parasitkd (Abt 2) 77:18–21Google Scholar
  62. Siebenthal CE (1915) Origin of the lead and zinc deposits of the Joplin region. US Geol Surv Bull 606, 283 ppGoogle Scholar
  63. Schidlowski M (1979) Antiquity and evolutionary status of bacterial sulfate reduction. Orig Life 9:299–311CrossRefGoogle Scholar
  64. Schidlowski M (1987) Evolution of the early sulphur cycle. In: Rodriguez-Clemente R, Tardy Y (eds) Geochemistry and Mineral Formation in the Earth Surface. Consejo Superior de Investigacions Cientificas, Madrid, 29–49Google Scholar
  65. Shaposhnikov VV, Koiïdrafeva EN, Federov VD (1960) A new species of green sulphur bacteria. Nature (London) 187:167–168CrossRefGoogle Scholar
  66. Skyring GW (1987) Sulfate reduction in coastal ecosystems. Geomicrobiol J 5:295–374CrossRefGoogle Scholar
  67. Skyring GM (1988) Acetate as the main energy substrate for the sulfate-reducing bacteria in Lake Eliza (South Australia) hypersaline sediments. FEMS Microbiol Ecol 53:87–94CrossRefGoogle Scholar
  68. Skyring GW, Donnelly TH (1982) Precambrian sulfur isotopes and a possible role for sulfìte in the evolution of biological sulfate reduction. Precambrian Res 17:41–61CrossRefGoogle Scholar
  69. Skyring GW, Chambers LA, Bauld J (1983) Sulfate reduction in sediments colonized by cyanobacteria, Spencer Gulf, South Australia. Aust J Mar Freshwater Res 34:359–374CrossRefGoogle Scholar
  70. Sørensen J, Jørgensen BB, Revsbech NP (1979) A comparison of oxygen, nitrate and sulfate respiration in coastal marine sediments. Microbial Ecol 5: 105–115CrossRefGoogle Scholar
  71. Sørensen J, Christensen D, Jørgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfatereducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42:5–11Google Scholar
  72. Sorokin Yul (1964) On the primary production and bacterial activities in the Black Sea. J Cons Int Explor Mer 29:41 -60Google Scholar
  73. Sorokin Yul (1970) Interrelations between sulphur and carbon turnover in meromictic lakes. Arch Hydrobiol 66:391–466Google Scholar
  74. Speich N, Trüper HG (1988) Adenylylsulphate reductase in a dissimilatory sulphate-reducing archaebacterium. J Gen Microbiol 134:1419–1425Google Scholar
  75. Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature (London) 305:309–311CrossRefGoogle Scholar
  76. Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236:822–824CrossRefGoogle Scholar
  77. Taylor J, Parkes RJ (1985) Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. J Gen Microbiol 131:631–642Google Scholar
  78. Temple KL (1964) Syngenesis of sulphide ores: an evaluation of biochemical aspects. Econ Geol 59: 1473–1491CrossRefGoogle Scholar
  79. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180Google Scholar
  80. Trudinger PA (1981) Origins of sulphide in sediments. BMR J Aust Geol Geophys 6:279–285Google Scholar
  81. Trudinger PA, Lambert IB, Skyring GW (1972) Biogenic sulphide ores: a feasibility study. Econ Geol 67: 1114–1127CrossRefGoogle Scholar
  82. Trudinger PA, Chambers LA, Smith JW (1985) Lowtemperature sulphate reduction: biological versus abiological. Can J Earth Sci 22:1910–1918CrossRefGoogle Scholar
  83. Trüper HG (1982) Microbiological processes in the sulfur cycle through time. In: Holland HD and Schidlowski M (eds) Mineral deposits and the evolution of the biosphere. Springer, Berlin Heidelberg New York, pp 5–30CrossRefGoogle Scholar
  84. Trüper HG, Fischer U (1982) Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. In: Postgate JR, Kelly DP (eds) Sulphur bacteria. R Soc, London, pp 99–112Google Scholar
  85. Trüper HG, Speich N, Leyendecker W, Dahl C, Becker P (1989) Dissimilatory and assimilatory sulfate reduction in archaebacteria. In: 9th Int Symp on environmental biogeochemistry, Moscow, USSR, Abstr, p157Google Scholar
  86. Turtle JH, Dugan PR, Macmillan CB, Randies CI (1969) Microbial dissimilatory sulfur cycle in acid mine water. J Bacteriol 97: 594–602Google Scholar
  87. Vainshtein MB, Matrosov AG, Baskunov VP, Zyakun AM, Ivanov MV (1980) Thiosulfate as an intermediate product of bacterial sulfate reduction. Microbiology 49:672–675 (Engl Transl of Mikrobiologiya 49: 855–858)Google Scholar
  88. Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfatreduzierender Bakterien. Thesis, Georg-August-Univ, Göttingen, 443 ppGoogle Scholar
  89. Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder JB (ed) Biology of anaerobic organisms. John Wiley & Sons, New York, pp 469–585Google Scholar
  90. Widdel F, Pfennig N (1981) Studies on dissimilatory sulfatereducing bacteria that decompose fatty acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgateii gen. nov., sp. nov. Arch Microbiol 129:395–400CrossRefGoogle Scholar
  91. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271Google Scholar
  92. Wolfe RS, Pfennig N (1977) Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol 33:427–433Google Scholar
  93. ZoBell CE (1957) Ecology of sulfate-reducing bacteria. In: Sulfate-reducing bacteria, their relation to the secondary recovery of oil. Sci Symp, St Bonaventure Coll, NY, pp1–24Google Scholar
  94. ZoBell CE, Morita RY (1957) Barophilic bacteria in deep sea sediments. J Bacteriol 73: 563–568Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • P. A. Trudinger
    • 1
  1. 1.Division of Continental GeologyBureau of Mineral ResourcesCanberraAustralia

Personalised recommendations