Biological Markers in Paleozoic Sedimentary Rocks and Crude Oils from the Michigan Basin: Reassessment of Sources and Thermal History of Organic Matter

  • Jürgen Rullkötter
  • Roger Marzi
  • Philip A. Meyers

Abstract

Paleozoic sedimentary rocks fill the Michigan Basin and provide the sources of the oils produced from this basin. The present geothermal gradient is not high in this shallow sequence, raising questions as to whether Devonian and younger strata are sufficiently thermally mature to have sourced petroleum. The thermal maturities of rock samples from Late Cambrian to Pennsylvanian strata have been determined using the kinetics of apparent transformations of biomarker molecules as an index, augmented by vitrinite reflectance measurements and Rock-Eval pyrolysis data. From the extents of sterane isomerization and the degrees of steroid aromatization in biomarkers extracted from these samples, the geothermal history of the Michigan Basin has been reconstructed. Organic matter in Devonian strata from the center of the basin is thermally mature; it is overmature in Ordovician rocks. The geological history of this basin has evidently been more complex than generally thought, suggesting higher temperatures or lower conduction rates in the past.

Keywords

Silurian Hydrocarbon Sandstone Pyrolysis Diesel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott GD, Lewis CA, Maxwell JR (1985) The kinetics of specific organic reactions in the zone of catagenesis. Philos Trans R Soc London Ser A 315: 107–122CrossRefGoogle Scholar
  2. Abbott GD, Wange GY, Eglinton TI, Home AK, Petch GS (1990) The kinetics of sterane biological marker release and degradation processes during the hydrous pyrolysis of vitrinite kerogen. Geochim Cosmochim Acta 54:2451–2461CrossRefGoogle Scholar
  3. Cercone KR (1984) Thermal history of the Michigan Basin. Bull Am Assoc Petrol Geol 68: 130–136Google Scholar
  4. Cercone KR, Pollack HN (1989) Anomalous thermal maturity of the Michigan Basin: new hypothesis. Bull Am Assoc Petrol Geol 73: 342 (abs)Google Scholar
  5. Dorr JA Jr, Eschman DF (1970) Geology of Michigan. Univ Mich Press, Ann Arbor, 476 ppGoogle Scholar
  6. Espitalié J, Laporte JL, Madec M, Maquis F, Leplat P, Paulet J, Boutefeu A (1977) Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’évolution. Rev Inst Fr Petrol 32:23–42Google Scholar
  7. ten Haven HL, de Leeuw JW, Peakman TM, Maxwell JR (1986) Anomalies in steroid and hopanoid maturity indices. Geochim Cosmochim Acta 50: 853–855CrossRefGoogle Scholar
  8. Hoffmann CF, Foster CB, Powell TG, Summons RE (1987) Hydrocarbon biomarkers from Ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917. Geochim Cosmochim Acta 51: 2681–2697CrossRefGoogle Scholar
  9. Illich HA, Grizzle PL (1983) Comment on “Comparison of Michigan Basin crude oils” by Vogler et al. Geochim Cosmochim Acta 47: 1157–1159CrossRefGoogle Scholar
  10. Illich HA, Grizzle PL (1985) Thermal subsidence and generation of hydrocarbons in Michigan Basin: discussion. Bull Am Assoc Petrol Geol 69: 1401–1404Google Scholar
  11. Mackenzie AS (1984) Application of biological markers in petroleum geochemistry. In: Brooks J, Welte DH (eds) Advances in Petroleum Geochemistry, vol 1. Academic Press, NewYork London, pp 115–214Google Scholar
  12. Mackenzie AS, McKenzie DP (1983) Isomerization and aromatization of hydrocarbons in sedimentary basins formed by extension. Geol Mag 120:417–470CrossRefGoogle Scholar
  13. Marzi R (1989) Kinetik und quantitative Analyse der Iso-merisierung und Aromatisierung von fossilen Steroid-kohlenwasserstoffen im Experiment und in natürlichen Probensequenzen. PhD Thesis, Rheinisch-Westf Tech Hochsch, AachenGoogle Scholar
  14. Marzi R, Rullkötter J (in press) Qualitative and quantitative evolution and kinetics of biological marker transformations -laboratory experiments and application to the Michigan Basin. In: Moldowan JM, Albrecht P, Philp RP (eds) Biological Markers in Sediments and Petroleum. Prentice Hall, Englewood CliffsGoogle Scholar
  15. Marzi R, Rullkötter J, Perriman WS (1990) Application of the change of sterane isomer ratios to the reconstruction of geothermal histories: implications of the results of hydrous pyrolysis experiments. In: Durand B, Béhar F (eds) Advances in Organic Geochemistry 1989. Perga-mon, Oxford, pp 91–102Google Scholar
  16. Meyers PA, Moore WE (1983) Comparison of Michigan Basin crude oils (reply to comments by Illich and Grizzle and by Pruitt). Geochim Cosmochim Acta 47: 1161 -1162CrossRefGoogle Scholar
  17. NunnJA, Sleep NH (1978) Thermal contraction and petroleum generation in Michigan Basin. Am Assoc Petrol Geol Abstr Pap, pp 99–100Google Scholar
  18. Nunn JA, Sleep NH, Moore WE (1984) Thermal subsidence and generation of hydrocarbons in Michigan Basin. Bull Am Assoc Petrol Geol 68: 296–315Google Scholar
  19. Nunn JA, Sleep NH, Moore WE (1985) Thermal subsidence and generation of hydrocarbons in Michigan Basin: reply. Bull Am Assoc Petrol Geol 69: 1185–1187Google Scholar
  20. Powell TG, Macqueen RW, Barker JF, Bree DG (1984) Geochemical character and origin of Ontario oils. Bull Can Soc Petrol Geol 32:289–312Google Scholar
  21. Pruitt JD (1983) Comment on “Comparison of Michigan Basin crude oils” by Vogler et al. Geochim Cosmochim Acta 47:1159–1161CrossRefGoogle Scholar
  22. Radke M, Sittardt HG, Welte DH (1978) Removal of soluble organic matter from rock samples with a flow-through extraction cell. Anal Chem 50: 663–665CrossRefGoogle Scholar
  23. Radke M, Willsch H, Welte DH (1980) Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Anal Chem 52: 406–411CrossRefGoogle Scholar
  24. Reed JD, Illich HA, Horsfield B (1986) Biochemical evolutionary significance of Ordovician oils and their sources. Org Geochem 10: 347–358CrossRefGoogle Scholar
  25. Rullkötter J, Marzi R (1989) New aspects of the application of sterane isomerisation and steroid aromatisation to petroleum exploration and the reconstruction of geothermal histories of sedimentary basins. Preprint Div Petrol Chem Am Chem Soc 34: 126–134Google Scholar
  26. Rullkötter J, Mackenzie AS, Welte DH, Leythauser D, Radke M (1984) Quantitative gas chromatography-mass spectrometry analysis of geological samples. Org Geochem 6:817–827CrossRefGoogle Scholar
  27. Rullkötter J, Spiro B, Nissenbaum A (1985) Biological marker characteristics of oils and asphalts from carbonate source rocks in a rapidly subsiding graben, Dead Sea, Israel. Geochim Cosmochim Acta 49: 1357–1370CrossRefGoogle Scholar
  28. Rullkötter J, Meyers PA, Schaefer RG, Dunham KW (1986) Oil generation in the Michigan Basin: a biological marker and carbon isotope approach. Org Geochem 10: 359–375CrossRefGoogle Scholar
  29. Sleep NH, Sloss LL (1978) A deep borehole in the Michigan Basin. J Geophys Res 83:5815–5819CrossRefGoogle Scholar
  30. Snowdon LR, Brooks PW, Williams GK, Goodarzi F (1987) Correlation of the Canol Formation source rock with oil from Norman Wells. Org Geochem 11:529–548CrossRefGoogle Scholar
  31. Strachan MG, Alexander R, van Bronswijk W, Kagi RI (1989) Source and heating rate effects upon maturity parameters based on ratio of 24-ethylcholestane diaste-reomers. J Geochem Explor 31:285–294CrossRefGoogle Scholar
  32. Summons RE, Powell TG (1987) Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochim Cosmochim Acta 51:557–566CrossRefGoogle Scholar
  33. Van der Voo R (1988) Paleozoic paleogeography of North America, Gondwana, and intervening displaced terranes: comparisons of paleomagnetism with paleoclimatology and biogeographical patterns. Geol Soc Am Bull 100:325–338CrossRefGoogle Scholar
  34. Vogler EA, Meyers PA, Moore WE (1981) Comparison of Michigan Basin crude oils. Geochim Cosmochim Acta 45:2287–2293CrossRefGoogle Scholar
  35. Vugrinovitch R (1989) Subsurface temperatures and surface heat flow in the Michigan Basin and the relationship to regional subsurface fluid movement. Mar Petrol Geol 6:60–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Jürgen Rullkötter
    • 1
  • Roger Marzi
    • 1
  • Philip A. Meyers
    • 2
  1. 1.Institut für Erdöl und Organische GeochemieForschungszentrum Jülich GmbHJülichGermany
  2. 2.Department of Geological SciencesThe University of MichiganAnn ArborUSA

Personalised recommendations