Skip to main content

Organic Free Radicals in Precambrian and Paleozoic Rocks: Origin and Significance

  • Chapter
Early Organic Evolution

Abstract

Fourteen Precambrian kerogens including seven isolated from stromatolites were studied by electron spin resonance (ESR). Organic free radicals were detected in only three of these kerogens: those from the Gunflint and Bitter Springs cherts and the Nonesuch shale. All three rocks are known to contain organically preserved microfossils. Comparative studies were conducted on the kerogens of eight fossiliferous Paleozoic rocks and a Jurassic anthracite. Careful measurements were made of g-values, line-widths, line-shapes, and integrated intensities of the observed signals. The kerogen radicals are believed to be polyaromatic structures with unpaired electrons stabilized as π electrons. The marked similarity of the ESR spectral parameters of the free radicals in Precambrian and Paleozoic kerogens and the Jurassic Vrška Čuka anthracite serves to strenghten the view that these radicals are relics of early biochemical processes.

It is suggested that chemical progenitors of Precambrian kerogens and associated free radicals are the corresponding sedimentary humic substances derived from algal and/or microbial sources. Interpretation of significant changes in spin concentration observed during pyrolysis of Precambrian kerogens containing radicals is based on published work on pure bituminous coal macerals (vitrinites and exinites) and anthracites. Experimental pyrolytic data and other evidence suggest that the Gunflint and Bitter Springs rocks have been exposed to temperatures of the order 100-150 °C during their burial histories through proximity to magmatic bodies and subsidence, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austen DEG, Ingram DJE, Given PH, Binder GR, Hill LW (1966) Electron spin resonance study of pure macerals. Coal Sci Adv Chem Ser 55: 334–362

    Google Scholar 

  • Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint chert. Science 147: 563–577

    Article  Google Scholar 

  • Barghoorn ES, Meinschein WG, Schopf JW (1965) Paleobiology of a Precambrian shale. Science 148:461–472

    Article  Google Scholar 

  • Cloud P (1965) Significance of the Gunflint (Precambrian) microflora. Science 148:27–45

    Article  Google Scholar 

  • Cloud PE Jr, Licari GR (1968) Microbiotas of the banded iron formations. Proc Natl Acad Sci USA 61: 779–786

    Article  Google Scholar 

  • Cope JM (1980) Physical and chemical properties of coalifìed and charcoalifìed phytoclasts from British Mesozoic sediments: an organic geochemical approach to palaeobotany. In: Douglas AG, MaxwellJR (eds) Advances in organic geochemistry 1979. Pergamon, Oxford, pp 663–677

    Google Scholar 

  • Duncan DC, Swanson VE (1965) Organic-rich shale of the United States and world land areas. US Geol Surv Circ 523:30pp

    Google Scholar 

  • Durand B, Marchand A, Combaz A (1977) Etude de kerogènes par résonance paramagnétique électronique. In: Compos R, Goni J (eds) Advances in organic geochemistry, 1975. Enadisma, Madrid, pp753–780

    Google Scholar 

  • Elmore RD (1981) The Copper Harbor conglomerate and Nonesuch shale: sedimentation in a Precambrian intracontinental rift, upper Michigan. Thesis, Univ Mich, Lansing 200 pp

    Google Scholar 

  • Elmore RD, Milavec GJ, Imbus SW, Engel MH (1989) The Precambrian Nonesuch Formation of the North American Mid-Continent Rift, sedimentology and organic geochemical aspects of lacustrine deposition. Precambrian Res 43:191–213

    Article  Google Scholar 

  • Enders C, Theis K (1938) Die Melanoide und ihre Beziehung zu den Huminsäuren. Brennstoff Chem 19:360–439

    Google Scholar 

  • ErtelJR, Hedges JI (1984) The lignin component of humic substances: distribution among soil and sedimentary humic, fulvic and base-insoluble fractions. Geochim Cosmochim Acta 48:2065–2074

    Article  Google Scholar 

  • FlaigW (1972) Some physical and chemical properties of humic substances as a basis of their characterization. In: von Gaertner HR, Wehner H (eds) Advances in organic geochemistry 1971. Pergamon, Oxford, pp49–67

    Google Scholar 

  • Flaig WH, Beutelspracher P, Reitz E (1975) Chemical composition and physical properties of humic substances. In: GiesekingJE (ed) Soil components 1. Springer, Berlin Heidelberg New York, pp 1–219

    Chapter  Google Scholar 

  • Gall JC (1983) Ancient sedimentary environments and the habitats of living organisms. Springer, Berlin Heidelberg New York. 219 pp

    Book  Google Scholar 

  • Gäumann EA (1964) Die Pilze. Birkhäuser, Basel, 298 pp

    Google Scholar 

  • Goodwin AM (1956) Facies relations in the Gunflint Iron Formation. Econ Geol 51:565–595

    Article  Google Scholar 

  • Griffiths DR, Rabin GV, Seeley NJ, Chandra H, McNeil DAC, Symons MCR (1982) Trapped methyl radicals in chert. Nature (London) 300:435–436

    Article  Google Scholar 

  • Griffiths DR, Seeley NJ, Symon MCR (1983) Investigation of chert heating conditions using ESR spectroscopy. In: Sieveking G, Hart MB (eds) Proc 4th Int Flint Symp 1983, Brighton. Cambridge Univ Press, London, 262 pp

    Google Scholar 

  • Hatcher PG (1980) The origin, composition, chemical structure, and diagenesis of humic substances, coals, and kerogens as studied by nuclear magnetic resonance. Thesis, Univ Mar, Baltimore, 283 pp

    Google Scholar 

  • Hatcher PG, Vanderhart DL, Earl WL (1980) Use of solid-state 13C NMR in structural studies of humic acids and humin from Holocene sediments. Org Geochem 2: 87–92

    Article  Google Scholar 

  • Hatcher PG, Breger IA, Earl WL (1981) Nuclear magnetic resonance studies of ancient buried wood. I. Observations on the origin of coal to the brown coal stage. Org Geochem 3:49–55

    Article  Google Scholar 

  • Hatcher PG, Breger IA, Szeverenyi N, Maciel GE (1982) Nuclear magnetic resonance studies of ancient buried wood. II. Observations on the origin of coal from lignite to bituminous coal. Org Geochem 4:9–18

    Article  Google Scholar 

  • Hayes JM, Kaplan RI, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JM (ed) Earth’s earliest biosphere: its origin and evolution. University Press, Princeton, pp 93–134

    Google Scholar 

  • Hodge JE (1953) Dehydrated foods. Chemistry of browning reactions in model system. J Agric Food Chem 1:928–943

    Article  Google Scholar 

  • Huc AY, Durand BM (1977) Occurrence and significance of humic acids in ancient sediments. Fuel 56: 73–80

    Article  Google Scholar 

  • Hurst HM, Burgess NA (1967) Lignin and humic acids. In: McLaren AD, Patterson GH (eds) Soil biochemistry. Dekker, New York, pp297–331

    Google Scholar 

  • Hwang PTR, Pusey WC (1973) Process for determining hydrocarbon maturity using electron spin resonance. US Pat 3, 740641

    Google Scholar 

  • Ikan R, Rubinsztain Y, Ioselis P, Aizenshtat Z, Pugmire R, Anderson LL, Woolfenden WR (1986) Carbon-13 cross-polarized magic-angle samples spinning nuclear magnetic resonance of melanoidins. Org Geochem 9:199–212

    Article  Google Scholar 

  • Ikeya M (1982) Electron spin resonance of petrified woods for geological age assessment. Jpn Appl Phys 22:128–130

    Google Scholar 

  • Ikeya M, Devine SD, Whitehead NE, Hedenwuist JW (1986) Detection of methane in geothermal quartz by ESR. Chem Geol 56:185–192

    Article  Google Scholar 

  • ImbusSW, Engel MH, Elmore RD, Zumberge JE (1988) The origin, distribution and hydrocarbon generation potential of organic-rich facies in the Nonesuch Formation, Central North American Rift system: a regional study. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon, Oxford, pp 207– 219

    Google Scholar 

  • Ingram DJE. Tapley BB, Jackson R, Bond RL, Murnaghan RA (1954) Paramagnetic resonance in carbonaceous solids. Nature (London) 174:797–798

    Article  Google Scholar 

  • Ishiwatari R (1974) Electron spin resonance of sedimentary humic acids in relation to their aromatic character. Geochem J 8:97–102

    Article  Google Scholar 

  • Jackson TA (1973) Humic matter in the bitumen of ancient sediments: variations through geologic time. Geology 1:163–166

    Article  Google Scholar 

  • Jovanović LJS (1989) Chemical structural study of Precambrian kerogens. Thesis, Univ Niš, 172pp

    Google Scholar 

  • Kazmierczak J (1975) Colonial Volvocales (Chlorophyta) from the Upper Devonian of Poland and their palaeo-environmental significance. Acta Palaeontol Pol 20: 73–75

    Google Scholar 

  • Kidston R, Lang WH (1917–1921) On old red sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire, pt I-V. Trans R Soc Edinburgh 51–52

    Google Scholar 

  • Kitanović GB (1984) Chemical structure of algal coals: a spectrochemical approach. Thesis, Univ Niš, 182pp

    Google Scholar 

  • Knoll AH, Barghoorn ES (1977) Archean microfossils showing all division from the Swaziland system of South Africa. Science 198:396–398

    Article  Google Scholar 

  • Komatinović BV (1984) Precambrian kerogens: a spectroscopic study. Thesis, Univ Niš, 153pp

    Google Scholar 

  • Kononova M (1966) Soil organic matter. Pergamon, London, 554 pp

    Google Scholar 

  • Maillard LC (1912) Action des acides amines sur les sucres: formation des mélanoidines par votre méthodiques. CR Acad Sci Paris 154:66–68

    Google Scholar 

  • Marchand A, Conrad J (1980) Electron paramagnetic resonance in kerogen studies. In: Durand B (ed) Kerogen. Editions Technip, Paris, pp 243–270

    Google Scholar 

  • Marchand A, Libert P, Combaz A (1968) Sur quelques critères physico-chimiques de la diagenèse d’un kérogène. CR Acad Sci Paris Ser D266:2316–2319

    Google Scholar 

  • Martin JP, Haider K (1971) Microbial activity in relation to soil humus formation. Soil Sci 111:54–63

    Article  Google Scholar 

  • Martin JP, Haider K, Bondietti E (1972) Properties of model humic acids synthesized by phenol oxidase and autooxidation of phenols and other compounds formed by soil fungi. In: Proc Int Meet Humic substances, Nieuwersluis. Pudoc, Wageningen, pp171–176

    Google Scholar 

  • McKirdy DM, Hahn JH (1982) The composition of kerogen and hydrocarbons in Precambrian rocks. In: Holland HD, Schidlowski M (eds) Mineral deposits and the evolution of the biosphere. Springer, Berlin Heidelberg New York, pp123–154

    Chapter  Google Scholar 

  • McKirdy DM, Powell TG (1974) Metamorphic alteration of carbon isotopic composition in ancient sedimentary organic matter: new evidence from Australia and South Africa. Geology 2:591–595

    Article  Google Scholar 

  • McKirdy DM, McHugh DJ, Tardif JW (1980) Comparative analysis of stromatolitic and other microbial kerogens by pyrolysis-hydrogenation gas chromatography (PHGC). In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Aust Acad Sci. Canberra, pp187–200

    Google Scholar 

  • McWeeny PJ. Knowles ME, Hearne JF (1974) The chemistry of non-enzymic browning in foods and its controls by sulphites. J Sci Food Agric 25:735–746

    Article  Google Scholar 

  • Meinschein WG, Barghoorn ES, Schopf JW (1964) Biological remnants in a Precambrian sediment. Science 45:262–264

    Article  Google Scholar 

  • Milsch B, Windsch W, Heinzelmann H (1968) EPR investigations of charred cellulose. Carbon 6: 807–812

    Article  Google Scholar 

  • Moore LR, Moore JRM, Spinner E (1969) A geomicrobiological study of the pre-Cambrian Nonesuch Shale. Yorkshire Geol Soc Proc 37:351–394

    Article  Google Scholar 

  • Muir MD, Grant PR (1976) Micropalaeontological evidence from the Onverwacht Group, South Africa. In: Windley BF (ed) The early history of the earth. John Wiley & Sons, New York, pp 595–604

    Google Scholar 

  • Nissenbaum A, Kaplan IR (1972) Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol Oceanogr 17: 570–582

    Article  Google Scholar 

  • Oehler JH (1972) Experimental studies in Precambrian paleontology: structural and chemical changes in blue-green algae during simulated fossilization in synthetic chert. Geol Soc Am 87: 117–129

    Article  Google Scholar 

  • Pantić N, Nikolic P (1973) Ugalj. Naučna knjiga, Belgrade, 559 pp

    Google Scholar 

  • Premović PI (1982) Aromatic free radicals in the Gunflint chert. Naturwissenschaften 69:479–482

    Article  Google Scholar 

  • Premović PI (1986) Electron spin resonance behavior of indigenous organic matter in silicic rocks on laboratory pyrolysis: the Bitter Springs and Rhynie cherts and petrified wood. J Serb Chem 51:63–609

    Google Scholar 

  • Premović PJ, Stojkovic SR, Pugmire RJ, Woolfenden WR, Rosenberger H, Scheler G (1986) Spectroscopic evidence for the chemical structure of algal kerogens. In: Rodriguez-Clemente R, Tardy Y (eds) Geochemistry and mineral formation in the earth’s surface. CSIC, Madrid, pp 431–440

    Google Scholar 

  • Premović PI, Komatinovic BV, Pugmire RJ, Woolfenden WR (1988 a) Solid-state 13C NMR of Middle Precambrian anthracite and related anthraxolite. Naturwissenschaften 75:98–100

    Article  Google Scholar 

  • Premović PI, Jovanović SLJ, Popović GB, Pavlović NZ, Pavlović MS (1988 b) Vanadium in ancient carbonaceous sedimentary rocks of marine origin: the Zvonce black shale. J Serb Chem Soc 53:427–431

    Google Scholar 

  • Premović PI, Kitanović GZ, Komatinović BV, Stojković SR (1989) ESR study of the Paradise Creek chert. Polyaromatic paramagnetic structures. J Serb Chem 54:83–87

    Google Scholar 

  • Pryor WA, Hales BJ, Premovic PI, Church DF (1983) The radicals in cigarette tar: their nature and suggested physiological implications. Science 220:425–427

    Article  Google Scholar 

  • Pusey WC (1973) The ESR kerogen method. How to evaluate potential gas and oil source rock. World Oil 176: 71 -75

    Google Scholar 

  • Retallack G (1981) Fossil soils: indicators of ancient terrestrial environments. In: Niklas KJ (ed) Paleobotany, paleoecology and evolution, vol 1. Wiley Interscience, New York, pp 17–54

    Google Scholar 

  • Retcofsky HL, Stark JM, Friedel RA (1968) Electron spin resonance in American coals. Anal Chem 40: 1699–1704

    Article  Google Scholar 

  • Rex RW (1960) Electron paramagnetic resonance studies of stable free radicals in lignins and humic acids. Nature (London) 188:1185–1186

    Article  Google Scholar 

  • Reznikov VM, Mikhaseva MF, Zil’bergleit MA (1978) The lignin of the alga Fucus vesiculosus. Khim Prirodn Soedin 5:648–650

    Google Scholar 

  • Rifaldi R, Schnitzer M (1972) Electron spin resonance spectrometry of humic substances. Soil Sci Soc Am Proc 36:301–305

    Article  Google Scholar 

  • Saiz-Jimenez C, Shafizadeh F (1985) Electron spin resonance spectrometry of fungal melanins. Soil Sci 139:319–325

    Article  Google Scholar 

  • Schidlowski M, Appel PWU, Eichmann R, Junge CE (1979) Carbon isotype geochemistry of the 3.7 × 109-yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochim Cosmo-chemActa 43: 189–199.

    Article  Google Scholar 

  • Schnitzer M (1971) Characterization of humic constituents by spectroscopy. In: McLaren AD, Skujins J (eds) Soil biochemistry, vol 2. Dekker, New York, pp 60–95

    Google Scholar 

  • Schnitzer M, Skinner SIM (1969) Free radicals in soil humic compounds. Soil Sci 108:383–390

    Article  Google Scholar 

  • Schopf JW (1968) Microflora of the Bitter Springs Formation, late Precambrian, central Australia. J Paleontol 42:651–688

    Google Scholar 

  • Schopf JW (1970) Electron microscopy of organically preserved Precambrian microorganisms. J Paleontol 44: 1– 12

    Google Scholar 

  • Schopf JW (1972) Precambrian paleobiology. In: Ponnamperuma C (ed) Exobiology. North-Holland, Amsterdam, pp16–60

    Google Scholar 

  • Schopf JW, Walter MR (1983) Archean microfossils: new evidence of ancient microbes. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. University Press, Princeton, pp93–134

    Google Scholar 

  • Southgate PN (1986) Depositional environment and mechanism of preservation of microfossils, upper Proter-ozoic Bitter Springs Formation, Australia. Geology 14:683–686

    Article  Google Scholar 

  • Steelink C (1964) Free radical studies of lignin, lignin degradation products and soil humic acids. Geochim Cosmochim Acta 28: 1615–1622

    Article  Google Scholar 

  • Steelink C (1966) Electron paramagnetic resonance studies of humic acid and related model compounds. Coal Science Adv Chem Ser No 55, 80–90

    Google Scholar 

  • Steinbrenner K, Matschke J (1971) Synthesis of humic substances by soil fungi. Trans Int Symp Humus Planta 5:111–115

    Google Scholar 

  • Stevenson FJ (1975) Nonbiological transformations of amino acids in soils and sediments. In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Paris, pp 701–714

    Google Scholar 

  • Stevenson FJ (1982) Humus chemistry. Wiley-Interscience, New York, 282 pp

    Google Scholar 

  • Stewart WN (1983) Paleobotany and the evolution of plants. Cambridge Univ Press, London, 396 pp

    Google Scholar 

  • Stuermer DH, Peters KE, Kaplan IR (1978) Source indicators of humic substances and protokerogen. Stable isotope ratios, elemental compositions and electron spin resonance spectra. Geochim Cosmochim Acta 42: 898–907

    Article  Google Scholar 

  • Teichmüller M, Teichmüller R (1979) Diagenesis of coal (coalifìcation). In: Larsen G, Chilingar GV (eds) Diagenesis in sediments and sedimentary rocks. Elsevier, Amsterdam, pp 207–246

    Chapter  Google Scholar 

  • Tissot BP, Welte DH (1978) Petroleum formation and occurrence. Springer, Berlin Heidelberg New York, 527 pp

    Google Scholar 

  • Turner WB (1971) Fungal metabolites. Academic Press, New York London, 271 pp

    Google Scholar 

  • Tyler SA, Barghoorn ES, Barret LP (1957) Anthracitic coal from Precambrian Upper Huronian black shale of the Iron River District, Northern Michigan. Bull Geol Soc Am 68:1293–1304

    Article  Google Scholar 

  • Uebersfeld J, Etienne A, Combrison J (1954) Paramagnetic resonance, a new property of coal-like materials. Nature (London) 174:614–615

    Article  Google Scholar 

  • Van Krevelen DW (1981) Coal-typology, chemistry, physics, constitution. Elsevier. Amsterdam, 514 pp

    Google Scholar 

  • Vasilevskaya NA, Golyashin VN, Denisenko NM, Maximov OB (1977) Chemical study of humic acids in Western Pacific bottom sediments. Oceanology 17: 300–307

    Google Scholar 

  • Walter MR (1983) Archean stromatolities: evidence of the Earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. University Press, Princeton, pp93–134

    Google Scholar 

  • Wedeking KW, Hayes JM, Matzigkeit U (1983) Procedures of organic geochemical analysis. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. University Press, Princeton, pp 428–441

    Google Scholar 

  • Wilson MA, Pugmire RJ, Karas J, Alemany LB, Wool-fenden WR, Grant DM (1984) Carbon distribution in coals and coal macerals by cross polarization magic angle spinning carbon-13 nuclear magnetic resonance spectrometry. Anal Chem 56:933–943

    Article  Google Scholar 

  • Yen TF, Sprang SR (1977) Contribution of ESR analysis toward diagenic mechanisms in bituminous deposits. Geochim Cosmochim Acta 41: 1007–1018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Premović, P.I. (1992). Organic Free Radicals in Precambrian and Paleozoic Rocks: Origin and Significance. In: Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A. (eds) Early Organic Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76884-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76884-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76886-6

  • Online ISBN: 978-3-642-76884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics