Spectral Analysis of Circulatory Rhythms and Baroreflex Sensitivity in Man

  • N. Honzíková
  • B. Fišer
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 55)


The spectral analysis technique was applied for noninvasive assessment of heartrate baroreflex sensitivity. The modulus (or gain) of the transfer function between variations in blood pressure and heart rate was calculated. During voluntarily controlled breathing intervals (3,4,5, 6,8,10 and 17 s), the amplitude of 0.1 Hz and respiratory peaks in spectra of heart rate and blood pressure changed markedly. Nevertheless, the average sensitivity of the baroreflex (modulus) changed insignificantly. The difference between the modulus at 0.1 Hz and at breathing rate indicates that baroreflex is only one of the factors causing respiratory arrhythmia.


Respiratory Frequency Blood Pressure Variability Baroreflex Sensitivity Breathing Rate Breathing Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peňáz J, Fišer B (1966) Amplitudové Spektrum spontánnich vín plethysmogramu a tepové frekvence u člověka (Amplitude spectrum of spontaneous fluctuations in the plethysmogram and heart rate in man). Čs fysiol 15:517Google Scholar
  2. 2.
    Taylor MG (1966) Use of random excitation and sjpectral analysis in the study of frequency-dependent parameters of the cardiovascular system. Circul Res 18:585–595Google Scholar
  3. 3.
    Peňáz J, Roukens J, vd Waal HJ (1967) Korelační a spektrální analysa spontánních rytmů v plethysmogramu a tepové frekvenci u člověka. Čs fysiol 16:259Google Scholar
  4. 4.
    Peňáz J, Roukens J, vd Waal HJ (1968) Spectral analysis of some spontaneous rhythms in the circulation. In: Biokybernetik I. Karl-Marx-Univ, Leipzig, pp 233–236Google Scholar
  5. 5.
    Peňáz J, Honzíková N, Fišer B (1978) Spectral analysis of spontaneous variability of some circulatory parameters in man. Physiol bohemoslov 27:349–357Google Scholar
  6. 6.
    Fišer B, Honzikovä N, Peňáz J (1978) Power spectra of spontaneous variations of indirectly recorded blood pressure, heart rate and acral blood flow. Automedica 2:143–147Google Scholar
  7. 7.
    Peňáz J (1969) Czechoslovak patent no. 133205Google Scholar
  8. 8.
    Honzíková N, Fišer B, Peňáz J (1980) Relationship between power spectra of respiration and of some circulatory parameters in man. In: Proc. of the Internat. Union of Physiol. Science. XXVIII. Internat. Congress, Budapest, p 477Google Scholar
  9. 9.
    Honzíková N, Peňáz J, Fišer B (1988) Power spectra of blood pressure and heart rate fluctuations during mental load. J Interdiscipl Cycle Res 19:75–59CrossRefGoogle Scholar
  10. 10.
    Honzíková N, Peňáz J, Fišer B (1987) Interpretation of differences in power spectra of blood pressure, heart rate and respiration in man. In: Hildebrandt G, Moog R, Raschke F (eds) Chronobiology and chronomedicine. Peter Lang, Frankfurt/Bern/New York/Paris, pp 172–176Google Scholar
  11. 11.
    Mulder LJM (1988) Assessment of cardiovascular reactivity by means of spectral analysis. Proefschrift, University GroningenGoogle Scholar
  12. 12.
    Eckberg DL, Cavanaugh MS, Mark AL, Abboud FM (1975) A simplified neck suction device for activation of carotid baroreceptors. J Lab Clin Med 85:167–173Google Scholar
  13. 13.
    Eckberg DL, Kifle YT, Roberts VL (1980) Phase relationship between normal human respiration and baroreflex responsiveness. J Physiol (Lond) 304:489–502Google Scholar
  14. 14.
    Eckberg DL, Orshan QR (1980) Central respiratory-baroreflex interaction in man. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interaction between respiratory and cardiovascular control systems. Springer, Berlin-Heidelberg-New York, pp 206–211Google Scholar
  15. 15.
    Smyth HS, Sleight P, Pickering GW (1969) Reflex regulation of arterial pressure during sleep in man: a quantitative method of assessing baroreflex sensitivity. Circ Res 24:109–121Google Scholar
  16. 16.
    Brooks D, Fox P, Lopez R, Sleight P (1978) The effect of mental arithmetic on blood pressure variability and baroreflex sensitivity in man. J Physiol (Lond) 280:75P-76PGoogle Scholar
  17. 17.
    Koepchen HP, Lux HD, Wagner PH (1961) Untersuchungen über Zeitbedarf und zentrale Verarbeitung des pressoreceptorischen Herzreflexes. Pfluegers Arch 273:413–430CrossRefGoogle Scholar
  18. 18.
    Saul JP (1990) Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. NIPS 5:32–37Google Scholar
  19. 19.
    Golenhofen K, Hildebrandt G (1962) Zur relativen Koordination von Atmung and Bludruckwellen dritter Ordnung. Z für Biologie 112:451–458Google Scholar
  20. 20.
    Peňáz J (1957) Oscillations de la fréquence cardiaque et du tonus vaso-moteur au cours de respiration ralenti et accélérée. J Physiol (Paris) 49:346–349Google Scholar
  21. 21.
    Sayers BMcA (1973) Analysis of heart rate variability. Ergonomics 16(l):17–32Google Scholar
  22. 22.
    Hyndman BW (1974) The role of rhythms in homeostasis. Kybernetik 15:227–236Google Scholar
  23. 23.
    Peňáz J, Buriánek P, Semrád B (1968) Dynamic aspects of vasomotor and autoregulatory control of blood flow. In: Hudlická O (ed) Circulation in Skeletal Muscle. Pergamon Press, OxfordGoogle Scholar
  24. 24.
    Wesseling KH, Settels JJ, Walstra van Esch HJ, Donders JJH (1983) Baromodulation as the cause of short term blood pressure variability? In: Alberi G, Bajzer Z, Baxa P (eds) Proc of the Internat Conf on Applications of Physics to Medicine and Biology. Singapore, pp 247–276Google Scholar
  25. 25.
    Peňáz J (1970) The blood pressure control system: A critical and methodological introduction. In: Köster M, Musaph H, Visser P (eds) Psychosomatics in Essential Hypertension. Karger, Basel-München-New York, pp 125–150Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • N. Honzíková
    • 1
  • B. Fišer
    • 1
  1. 1.Department of PhysiologyMasaryk University, Faculty of MedicineBrnoCzechoslovakia

Personalised recommendations