Autorhythmicity in Blood Vessels: Its Biophysical and Biochemical Bases

  • G. Siegel
  • A. Walter
  • F. Schnalke
  • H. W. Hofer
  • H. P. Koepchen
  • K. Riickborn
Part of the Springer Series in Synergetics book series (SSSYN, volume 55)


The rhythmogenic properties of vascular smooth muscle are closely linked to the intact circulation. The electrical and mechanical oscillations, which can be traced back to rhythmic activity of the active, electrogenic Na+/K+ pump, could originate in the allosteric qualities of the enzyme phosphofructokinase. Thus, phosphofructokinase represents a rhythmogenic enzyme which may well serve as an example of the connection between biological properties on a molecular level and the system’s behaviour in space and time.


Vascular Smooth Muscle Krebs Solution Slow Wave Activity Noradrenaline Concentration Period Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aschoff, J.: Circadian clocks. Amsterdam: North-Holland Publ. Comp. 1965.Google Scholar
  2. 2.
    Boiteux, A., Goldbeter, A., Hess, B.: Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: a model and experimental study. Proc. Natl. Acad. Sci. U.S.A. 72, 3829–3833 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CrossRefGoogle Scholar
  4. 4.
    Bülbring, Edith, Lüllmann, H.: The effect of metabolic inhibitors on the electrical and mechanical activity of the smooth muscle of the guinea-pig’s taenia coli. J. Physiol. (Lond.) 136, 310–323 (1957).Google Scholar
  5. 5.
    Cannell, M.B., Lederer, W.J.: The arrhythmogenic current ITI in the absence of electrogenic sodium-calcium exchange in sheep cardiac Purkinje fibres. J. Physiol. (Lond.) 374, 201–219 (1986).Google Scholar
  6. 6.
    Casteels, R., Kitamura, K., Kuriyama, H., Suzuki, H.: The membrane properties of the smooth muscle cells of the rabbit main pulmonary artery. J. Physiol. (Lond.) 271, 41–61 (1977).Google Scholar
  7. 7.
    Chance, B., Pye, E.K., Ghosh, A.K., Hess, B.: Biological and biochemical oscillators. New York, London: Academic Press 1973.Google Scholar
  8. 8.
    Chance, E.M., Curtis, A.R., Jones, I.P., Kirby, C.R.: FACSIMILE: a computer program for flow and chemistry simulation, and general initial value problems. Harwell: UK Atomic Energy Authority 1977.Google Scholar
  9. 9.
    Evans, P.R., Hudson, P.J.: Three dimensional structure of phosphofructokinase from Bacillus stearothermophilus. In: Protein: structure, function and industrial applications, edited by Hofmann, E., Pfeil, W., Aurich, H., pp. 349–357. Oxford: Pergamori Press 1979.Google Scholar
  10. 10.
    Goldbeter, A.: Patterns of spatiotemporal organization in an allosterie enzyme model. Proc. Natl. Acad. Sci. U.S.A. 70, 3255–3259 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    Haken, H.: Entwicklungslinien der Synergetik, I. Naturwissenschaften 75, 163–172 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    Haken, H.: Entwicklungslinien der Synergetik, II. Naturwissenschaften 75, 225–234 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    Hermsmeyer, K.: High shortening velocity of isolated single arterial muscle cells. Experientia 35, 1599–1602 (1979).CrossRefGoogle Scholar
  14. 14.
    Hermsmeyer, K., Harder, D.: Membrane ATPase mechanism of K+-return relaxation in arterial muscles of stroke-prone SHR and WKY. Am. J. Physiol. 250, C557-C562 (1986).Google Scholar
  15. 15.
    Hess, B.: Modelle enzymatischer Prozesse. In: Biologische Modelle, Band 33, edited by Scharf, J.-H., Bruns, G., pp. 195–230. Leipzig: Johann Ambrosius Barth 1968.Google Scholar
  16. 16.
    Hofer, H.W., Pette, D.: Verfahren einer standardisierten Extraktion und Reinigung der Phosphofructokinase aus Kaninchen-Skelettmuskel. Hoppe-Seyler’s Z. physiol. Chem. 349, 995–1012 (1968).CrossRefGoogle Scholar
  17. 17.
    Koepchen, H.P.: Die Blutdruckrhythmik. Darmstadt: Dr. Dietrich Steinkopff Verlag 1962.Google Scholar
  18. 18.
    Koepchen, H.P., Seller, H., Polster, J.: Hochempfindliche Widerstandsregistrierung bei kleinen Flüssen. Pflugers Arch. ges. Physiol. 294, 72–78 (1967).Google Scholar
  19. 19.
    Koepchen, H.P., Seller, H., Polster, J., Langhorst, P.: Über die Fein-Vasomotorik der Muskelstrombahn und ihre Beziehung zur Ateminnervation. Pflügers Arch. ges. Physiol. 302, 285–299 (1968).Google Scholar
  20. 20.
    Kubista, V., Kubistova, J., Pette, D.: Thyroid hormone induced changes in the enzyme activity pattern of energy-supplying metabolism of fast (white), slow (red), and heart muscle of the rat. Eur. J. Biochem. 18, 553–560 (1971).CrossRefGoogle Scholar
  21. 21.
    Kuriyama, H.: Ionic basis of smooth muscle action potentials. In: Handbook of Physiology, Section 6: Alimentary Canal, vol. IV, Motility, edited by Code, Ch.F., pp. 1767–1791. Washington, D.C.: American Physiological Society 1968.Google Scholar
  22. 22.
    Kuriyama, H., Suyama, A.: Multiple actions of cocaine on neuromuscular transmission and smooth muscle cells of the guinea-pig mesenteric artery. J. Physiol. (Lond.) 337, 631–654 (1983).Google Scholar
  23. 23.
    Marquardt, D.L.: An algorithm for least squares estimates of non-linear parameters. J. Siam 11, 431–441 (1963).MathSciNetzbMATHGoogle Scholar
  24. 24.
    Monod, J., Wyman, J., Changeux, J.-P.: On the nature of allosteric transitions: a plausible model. J. mol. Biol. 12, 88–118 (1965).CrossRefGoogle Scholar
  25. 25.
    Plesser, Th.: Dynamic states of allosteric enzymes. In: VII. Internationale Konferenz über nichtlineare Schwingungen, vol. II/2, pp. 273–280. Berlin: Akademie-Verlag 1977.Google Scholar
  26. 26.
    Plesser, Th., Lamprecht, I.: Chemical turnover and the rate of heat production in complex reaction systems. Springer Series in Synergetics 39, 182–192 (1988).Google Scholar
  27. 27.
    Polster, J., Seller, H., Langhorst, P., Koepchen, H.P.: Zeitliche Eigenschaften der Vasomotorik. Über den Verlauf von Widerstandsänderungen an Hautgefaßen bei indirekter Reizung. Pflügers Arch. ges. Physiol. 296, 95–109 (1967).Google Scholar
  28. 28.
    Seller, H., Langhorst, P., Polster, J., Koepchen, H.-P.: Zeitliche Eigenschaften der Vasomotorik. Erscheinungsformen und Entstehung spontaner und nervös induzierter Gefaßrhythmen. Pflügers Arch. ges. Physiol. 296, 110–132 (1967).Google Scholar
  29. 29.
    Siegel, G.: Principles of vascular rhythmogenesis. Prog. appl. Microcirc. 3, 40–62 (1983).Google Scholar
  30. 30.
    Siegel, G.: Membranphysiologische Grundlagen der Gefäßeigenrhythmik. In: Vasomotion und quantitativeKapillaroskopie, hrsg. von Meßmer, K., Hammersen, F., pp. 42–70. Basel, München, Paris, London, New York, Tokyo, Sydney: S. Karger 1983.Google Scholar
  31. 31.
    Siegel, G.: Membranphysiologische Grundlagen der peripheren Gefäßregulation. Physiol, akt. 1, 31–52 (1986).Google Scholar
  32. 32.
    Siegel, G., Adler, A., Ebeling, B.J., Roedel, H., Hofer, H.W., Nolte, J.: Temporal behaviour of transmembrane ion exchange in vascular smooth muscle. Angéiologie 36, 261–285 (1984).Google Scholar
  33. 33.
    Siegel, G., Carl, A., Adler, A., Stock, G.: Effect of the prostacyclin analogue iloprost on K+ permeability in the smooth muscle cells of the canine carotid artery. Eicosanoids 2, 213–222 (1989).Google Scholar
  34. 34.
    Siegel, G., Ebeling, B.J., Hofer, H.W.: Foundations of vascular rhythm. Ber. Bunsenges. Phys. Chem. 84, 403–406 (1980).Google Scholar
  35. 35.
    Siegel, G., Ebeling, B.J., Hofer, H.W., Nolte, J., Roedel, H., Klüßendorf, D.: Vascular smooth muscle rhythmicity. In: Mechanisms of blood pressure waves, edited by Miyakawa, K., Koepchen, H.P., Polosa, C., pp. 319–340. Tokyo, Berlin, Heidelberg, New York: Japan Sci. Soc. Press and Springer-Verlag 1984.Google Scholar
  36. 36.
    Siegel, G., Ehehalt, R., Koepchen, H.P.: Membrane potential and relaxation in vascular smooth muscle. In: Mechanisms of vasodilatation, edited by Vanhoutte, P.M., Leusen, I., pp. 56–72. Basel, München, Paris, London, New York, Sydney: S. Karger 1978.Google Scholar
  37. 37.
    Siegel, G., Hofer, H.W., Schnalke, F., Adler, A., Walter, A., Koepchen, H.P.: Membrane physiological basis of vascular autorhythmicity. Prog. appl. Microcirc. 15, 10–31 (1989).Google Scholar
  38. 38.
    Siegel, G., Jäger, R., Nolte, J., Bertsche, O., Roedel, H., Schröter, R.: Ionic concentrations and membrane potential in cerebral and extracerebral arteries. In: Pathology of cerebral microcirculation, edited by Cervós-Navarro, J., pp. 96–120. Berlin, New York: Walter de Gruyter 1974.Google Scholar
  39. 39.
    Siegel, G., Koepchen, H.P., Roedel, H.: Slow oscillations of transmembrane Na and K fluxes in vascular smooth muscle. In: Vascular smooth muscle, edited by Betz, E., pp. 3–6. Berlin, Heidelberg, New York: Springer-Verlag 1972.Google Scholar
  40. 40.
    Siegel, G., Roedel, H., Hofer, H.W.: Basic rhythms in vascular smooth muscle. INSERM Coll. 50, 215–232 (1976).Google Scholar
  41. 41.
    Siegel, G., Roedel, H., Nolte, J., Hofer, H.W., Bertsche, O.: Ionic composition and ion exchange in vascular smooth muscle. In: Physiology of smooth muscle, edited by Bülbring, E., Shuba, M.F., pp. 19–39. New York: Raven Press 1976.Google Scholar
  42. 42.
    Siegel, G., Schnalke, F., Stock, G.: Vasorelaxation in prostacyclin-hyperpolarized arterial smooth musculature. Prog. Clin. Biol. Res. 301, 441–447 (1989).Google Scholar
  43. 43.
    Siegel, G., Thiel, M., Walter, A., Adler, A.: Membranphysiologische Grundlagen der Vasomotorik. In: Berichtsband der 5. Gemeinsamen Jahrestagung der Angiologischen Gesellschaften der Bundesrepublik Deutschland, Österreichs und der Schweiz, hrsg. von Häring, R., pp. 147–153. Gräfelfing: Demeter Verlag 1986.Google Scholar
  44. 44.
    Siegel, G., Walter, A., Bostanjoglo, M., Jans, A.W.H., Kinne, R., Piculell, L., Lindman, B.: Ion transport and cation-polyanion interactions in vascular biomembranes. J. Membrane Sci. 41, 353–375 (1989).CrossRefGoogle Scholar
  45. 45.
    Van Schaftingen, E., Hers, H.-G.: Formation of fructose 2,6-bisphosphate from fructose 1,6- bisphosphateby intramolecular cyclisation followed by alkaline hydrolysis, Eur. J. Biochem. 117, 319–323 (1981).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • G. Siegel
    • 1
  • A. Walter
    • 1
  • F. Schnalke
    • 1
  • H. W. Hofer
    • 2
  • H. P. Koepchen
    • 1
  • K. Riickborn
    • 3
  1. 1.Institute of PhysiologyThe Free University of BerlinBerlin 33Germany
  2. 2.Department of BiologyThe University of KonstanzKonstanzGermany
  3. 3.Institute of PhysiologyThe University of RostockRostock 1Germany

Personalised recommendations