Advertisement

Spatio-Temporal EEG Patterns

  • R. Friedrich
  • A. Fuchs
  • H. Haken
Part of the Springer Series in Synergetics book series (SSSYN, volume 55)

Abstract

Systems far from equilibrium exhibit the spontaneous emergence of spatial, temporal, and spatio-temporal patterns by the mechanism of self-organization [1], [2], [3]. Recently, considerable interest has been addressed to the study of systems which form coherent spatial structures undergoing a complex and chaotic temporal evolution. Examples may be found e.g, in the fields of hydrodynamic instabilities or chemical reactions. It has been recognized that similar phenomena can also be observed in biological systems. The present paper is devoted to the examination of spatio-temporal patterns connected with the electrical activity of the brain measuredin the form of electroencephalograms (EEG).

Keywords

Normal Form Standing Wave Epileptic Seizure Brain Wave Oscillatory Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Haken: Synergetics. An Introduction, 3rd edition, Springer, Berlin (1983)zbMATHGoogle Scholar
  2. [2]
    H. Haken: Advanced Synergetics, 2nd ed., Springer, Berlin (1987)Google Scholar
  3. [3]
    H. Haken: Information and Selforganization, Springer, Berlin (1988)Google Scholar
  4. [4]
    A. Fuchs, R. Friedrich, H. Haken, and D. Lehmann: ’Spatio-Temporal Analysis of Multichannel α-EEG Map Series’, in Computational Systems — Natural and Artificial, ed. by H. Haken, Springer, Berlin (1987)Google Scholar
  5. [5]
    R. Friedrich, A. Fuchs, and H. Haken: ’Synergetic Analysis of Spatio-Temporal EEG Patterns’, Proceedings of the workshop Nonlinear Phenomena in Excitable Media, Leeds (1989)Google Scholar
  6. [6]
    R. Friedrich, A. Fuchs, and H. Haken: ’Modelling of Spatio-Temporal EEG Patterns’, Proceedings of the workshop Mathematical Approaches to Brain Functioning Diaqnosiics, ed. by A. Holden, to appear in: Manchester University Press Series Proceedinqs in Nonlinear Science Google Scholar
  7. [7]
    A. Babloyantz: ’Strange Attractors in the Dynamics of Brain Activity’, in: Complez SlIstemsOperational Approaches, ed. by H. Haken, Springer, Berlin (1985)Google Scholar
  8. A. Babloyantz, C. Nicolis, and M. Salazar: ’Evidence of chaotic dynamics of brain activity during the sleep cycle’, Phys. Lett. A 111, 152 (1985)ADSGoogle Scholar
  9. A. Babloyantz and A. Destexhe: ’Strange Attractors in the Human Cortex’, in: Temporal Disorder in Human Oscillatory Systems, ed. by L. Rensing, U. van der Heiden, M.C. Mackey, Springer, Berlin (1986)Google Scholar
  10. A. Babloyantz and A. Destexhe: ’Low-dimensional chaos in an instance of epilepsy’, Proc. Natl. Acad. Sci. 83, 3513–3517 (1986)ADSCrossRefGoogle Scholar
  11. [8]
    M. Schanz, unpublishedGoogle Scholar
  12. [9]
    G. Mayer-Kress and J. Holzfuss: ’Analysis of the Human Electroencephalogram with Methods from Nonlinear Dynamics’, in: Temporal Disorder in Human Oscillatory Systems, ed. by L. Rensing, U. van der Heiden, M.C. Mackey, Springer, Berlin (1986).Google Scholar
  13. S.P. Layne, G. Mayer-Kress, and J. Holzfuss: ’Problems Associated with Dimensional Analysis of Electroencephalogram Data’, in: Dimensions and Entropies in Chaotic Systems, ed. by G. Mayer-Kress, Springer, Berlin (1986)Google Scholar
  14. [10]
    I. Dvorak, J. Siska: ’On some problems encountered in the estimation of the correlation dimension of the EEG’, Phys. Lett. A 118, 63–66 (1986)Google Scholar
  15. [11]
    D. Lehmann: ’Multichannel Topography of Human Alpha EEG Fields’, Electroenceph. clin. Neurophysiol., 31, 439–449 (1971)CrossRefGoogle Scholar
  16. D. Lehmann: ’Human Scalp EEG Fields: Evoked, Alpha, Sleep, and SpikeWave Patterns’, in: Synchronization of EEG Activity in Epilepsies, ed. by H. Petsche and M.A.B. Brazier, Springer, Berlin (1972)Google Scholar
  17. [12]
    M. Golubitsky, I.N. Stewart, and D.G. Schaeffer: Singularities and Groups in Bifurcation Theory: Vol. II, Springer, Berlin (1988)zbMATHCrossRefGoogle Scholar
  18. [13]
    V. A. Arnold: Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, Berlin (1983)zbMATHGoogle Scholar
  19. [14]
    See e.g.: J. Guckenheimer, P.J. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, Berlin (1983)Google Scholar
  20. [15]
    A. Arneodo, P.H. Coullet and E.A. Spiegel: ’Chaos in a finite macroscopic system’, Phys. Lett. A 92 369 (1982)MathSciNetADSGoogle Scholar
  21. [16]
    J.P. Eckmann, D. Ruelle: ’Fundamental Limitations for Estimating Dimensions and Lyapunov Exponents in Dynamical Systems’, Preprint IHES/P/90/11Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • R. Friedrich
    • 1
  • A. Fuchs
    • 1
  • H. Haken
    • 1
  1. 1.Institut für Theoretische Physik und SynergetikUniversitat StuttgartStuttgart 80Germany

Personalised recommendations