Synergetic Dynamics of Biological Coordination with Special Reference to Phase Attraction and Intermittency

  • J. A. S. Kelso
  • G. C. DeGuzman
  • T. Holroyd
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 55)


Under conditions in which absolute phase and frequency synchronization are neither essential nor attainable for biological functioning, some form of relative coordination is still possible. Attraction toward certain phase and frequency relations remains, but phase slippage as well as occasional skips and jumps occur as the component units adjust spatially and temporally. We establish the connection between this less rigid form of coordination and intermittency, a generic feature of dynamical systems near tangent bifurcations. Intermittency provides a mechanism for entering and exiting mode-locked states, endowing the system with a vital mix of flexibility and coherence. In the intermittent régime close to critical points, the system possesses a ‘predictive’ or ‘anticipatory’ property. The identified dynamics are level-independent and may be essential to a number of different biological functions.


Phase Attraction Frequency Ratio Central Pattern Generator Relative Coordination Stable Fixed Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haken, H. (1977/1983). Synergetics, an introduction: Non-equilibrium phase transitions and self-organization in physics, chemistry and biology. Berlin: Springer-Verlag, 3rd edition.Google Scholar
  2. 2.
    Kelso, J.A.S. (1981). On the oscillatory basis of movement. Bulletin of the Psychonomic Society,18, 63.Google Scholar
  3. 3.
    Kelso, J.A.S. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 15, R1000-R10004.Google Scholar
  4. 4.
    Cohen, A.V., S. Rossignol, & S. Grfflner (Eds.) (1988), Neural control of rhythmic movements in vertebrates. New York: John Wiley.Google Scholar
  5. 5.
    Kopell, N. (1988). Toward a theory of modelling central pattern generators. In A.V. Cohen, S. Rossignol, & S. Grillner (Eds.), Neural control of rhythmic movements in vertebrates (pp. 369–413). New York: John Wiley.Google Scholar
  6. 6.
    Marder, E. (1989). Modulation of neural networks underlying behavior. Seminars in the Neurosciences, 1(1), 3–4.Google Scholar
  7. 7.
    Selverston, A.I. (1988). Switching among functional states by means of neuromodulators in the lobster stomatogastric ganglion. Experientia, 44, 376–383.CrossRefGoogle Scholar
  8. 8.
    Gray, C.M., Konig, P., Engel, A.K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.ADSCrossRefGoogle Scholar
  9. 9.
    Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Monk, M. & Reitboeck, H.J. (1988). Coherent Oscillations: A mechanism of feature linking in the visual cortex? Biological Cybernetics, 60, 121–130.CrossRefGoogle Scholar
  10. 9a.
    Barinaga, M. (1990). The mind revealed? Science, 249, 856–858.ADSCrossRefGoogle Scholar
  11. 10.
    von Holst, E. (1939/1973). Relative coordination as a phenomenon and as a method of analysis of central nervous function. Reprinted in: The collected papers of Erich von Holst. Coral Gables, Florida: University of Miami Press.Google Scholar
  12. 11.
    Haken, H., Kelso, J.A.S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 39, 139–156.MathSciNetGoogle Scholar
  13. 12.
    Jeka, J.J. & Kelso, J.A.S. (1989). The dynamic pattern approach to coordinated behavior: A tutorial review. In S.A. Wallace (Ed.), Perspectives on the coordination of movement (pp. 3–45). Amsterdam: North-Holland.CrossRefGoogle Scholar
  14. 13.
    Schöner, G., & Kelso, J.A.S. (1988a). Dynamic pattern generation in behavioral and neural systems. Science, 239, 1513–1520.ADSCrossRefGoogle Scholar
  15. 14.
    Bergé, P., Pomeau, Y. & Vidäl, C., 1984. Order within chaos: Towards a deterministic approach to turbulence. New York: John Wiley.zbMATHGoogle Scholar
  16. 15.
    Mandell, A.J. (1983). From intermittency to transitivity in neuropsychobiological flows. American J. Physiol, 245, R484-R494.Google Scholar
  17. 16.
    Kelso, J.A.S., DelColle, J.D., & Schöner, G., 1990. Action-perception as a pattern formation process. In M. Jeannerod (Ed.), Attention and Performance XIII (pp. 139–169), Hillsdale, N.J.: Erlbaum.Google Scholar
  18. 17.
    Kelso, J.A.S. (1990). Phase transitions: Foundations of behavior. In H. Haken & M. Stadler (eds.). Synergetics of Cognition, Berlin: Springer-Verlag, pp. 249–268.Google Scholar
  19. 18.
    Schöner, G., Haken, H., & Kelso, J.A.S. (1986). A stochastic theory of phase transitions in human hand movement. Biological Cybernetics, 53, 442–452.CrossRefGoogle Scholar
  20. 19.
    Kelso, J.A.S., Scholz, J.P., & Schöner, G. (1986). Non-equilibrium phase transitions in coordinated biological motion: critical fluctuations. Physics Letters, A118, 279–284.Google Scholar
  21. 20.
    Kelso, J.A.S., Buchanan, J.H. & Wallace, S.A. (in press). Order parameters for the neural organization of single, multijoint limb movement patterns. Exp. Brain Res.Google Scholar
  22. 21.
    Scholz, J.P., & Kelso, J.A.S. (1989). A quantitative approach to understanding the formation and change of coordinated movement patterns. Journal of Motor Behavior, 21, 122–144.Google Scholar
  23. 22.
    Schmidt, R.C., Carello, C. & Turvey, M.T., (1990). Phase transitions and critical fluctuations in visually coupled oscillators. J. Exp. Psychol. Human Perc. & Perf., 16, 227–247.CrossRefGoogle Scholar
  24. 23.
    Kelso, J.A.S. & DeGuzman, G. (1988). Order in time: How cooperation between the hands informs the design of the brain. In H. Haken (ed.), Neural and synergetic computers. Berlin: Springer-Verlag, pp. 180–196.Google Scholar
  25. 24.
    DeGuzman, G.G. & Kelso, J.A.S. (in press). Multifrequency behavioral patterns and the phase attractive circle map. Biological Cybernetics.Google Scholar
  26. 25.
    Glazier, J.A. & Libchaber, A. (1988). Quasiperiodicity and dynamical systems: An experimentalist’s view. IEEE Transactions on Circuits and Systems, 35, 790.MathSciNetCrossRefGoogle Scholar
  27. 26.
    Kelso, J.A.S., DeGuzman, G.C. & Holroyd, T. (in press). The self organized phase attractive dynamics of coordination. In A. Babloyantz (Ed.) Self-organization, Emerging Properties and Learning,. New York: Plenum.Google Scholar
  28. 27.
    Kelso, J.A.S. (in press). Anticipatory dynamical systems, intrinsic pattern dynamics and skill learning. Human Move. Sci. Google Scholar
  29. 28.
    Beek, P.J. (1989). Juggling Dynamics. Amsterday: Free University Press.Google Scholar
  30. 29.
    Haken, H. (1983). Synopsis and introduction. In E. Basar, H. Flohr, H. Haken & A.J. Mandell (eds.), Synergetics of the Brain. Berlin: Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J. A. S. Kelso
    • 1
  • G. C. DeGuzman
    • 1
  • T. Holroyd
    • 1
  1. 1.Program in Complex Systems and Brain SciencesFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations