Power Laws, Transients, Attractors, and Entropy: Possible Implications for Cardiovascular Dynamics

  • J. P. Zbilut
Part of the Springer Series in Synergetics book series (SSSYN, volume 55)


Considerable work has been done to demonstrate that the dynamics of the cardiovascular system is nonlinear. What has not been well recognized is that the system is essentially governed by transients. Conversely, then, if a system component’s dynamics become dominated by basins of attraction, pathology may ensue. It is heuristically demonstrated that a critical feature of possible pathology is the relation of the system entropy to component entropy: if a component’s (sub) basin of attraction is accompanied by a decrease in entropy, it may become informationally isolated. A method, originally suggested by Eckmann, et al., is proposed which may be able to detect such changes without the need to reconstruct a global attractor.


Power Spectrum Lyapunov Exponent Global Attractor Congestive Heart Failure Patient Regional Wall Motion Abnormality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Glass and P. Hunter, Physica 43D, 1 (1990).ADSGoogle Scholar
  2. 2.
    D. Ruelle, Proc. Royal Soc. (Lond) A 413, 5 (1987).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    A. L. Goldberger, D. R. Rigney, B. J. West, Sci. Am. 262, 40 (1990).CrossRefGoogle Scholar
  4. 4.
    H. Takayasu, Fractals in the Physical Sciences (Manchester Univ. Press, Manchester, 1990).zbMATHGoogle Scholar
  5. 5.
    M. Duong-Van, M. D. Feit, and G. W. Hedstrom, Phys. Lett. A 147, 195 (1990).ADSGoogle Scholar
  6. L. Glass, A. Beuter, D. Larocque, Math. Biosci. 90, 111 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 6.
    M. C. Mackey and J. G. Milton, Comments on Theor. Biol. 1, 299 (1990).Google Scholar
  8. R. J. Deissler and J. D. Farmer, Los Alamos Preprint, LA-UR-89–4236 (1989).Google Scholar
  9. A. Longtin, J. G. Milton, J. E. Bos, M. C. Mackey, Phys. Rev. A 41, 6992 (1990).ADSGoogle Scholar
  10. 9.
    F. Griineis, M. Nakao, M. Yamamoto, T. Musha, H. Nakahama, Biol. Cybern. 60, 161 (1989).Google Scholar
  11. 10.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).MathSciNetADSCrossRefGoogle Scholar
  12. 11.
    J. P. Saul, News in Physiol. Sciences 5, 32 (1990).Google Scholar
  13. 12.
    A. Selman, A. McDonald, R. Kitney, D. Linkens, Automedica 4, 131 (1982).Google Scholar
  14. 13.
    R. D. Berger, J. P. Saul, R. J. Cohen, Amer. J. Physiol. 25, H142 (1989).Google Scholar
  15. 14.
    F. Romeiras, C. Grebogi, E. Ott, Phys. Rev. A 38, 463 (1988).ADSCrossRefGoogle Scholar
  16. 15.
    A. R. Osborne and A. Provenzale, Physica 35D, 357 (1989).MathSciNetADSGoogle Scholar
  17. J. P. Zbilut, J. Briller, N. Weinstein, W. Wiessner, in IEEE Computers in Cardiology (1990), to appear.Google Scholar
  18. 17.
    V. I. Krinskii, Biofizika 11, 776 (1966).Google Scholar
  19. 18.
    C. H. Bennett, Physica 163A, 393 (1990).ADSGoogle Scholar
  20. 19.
    M. E. Josephson, L. N. Horowitz, A. Farshidi, S. R. Spielman, E. L. Michelson, A. M. Greenspan, Circ. 59, 459 (1979).Google Scholar
  21. 20.
    D. J. Hearse and A. Tosaki, J. Mol. Cell. Cardiol. 20, 213 (1988).CrossRefGoogle Scholar
  22. 21.
    J. P. Zbilut, C. E. Lawless, M. F. O’Toole, G. Mayer-Kress, P. A. Sobotka, N. A. Voss, H. S. Loeb, Clin. Res. 37, 893A (1989).Google Scholar
  23. 22.
    J. P. Zbilut, G. Mayer-Kress, P. A. Sobotka, M. O’Toole, J. X. Thomas Jr., Biol. Cybern. 61, 371 (1989).MathSciNetCrossRefGoogle Scholar
  24. J. P. Zbilut, M. Koebbe, H. Loeb, G. Mayer-Kress, in IEEE Computers in Cardiology (1990), to appear.Google Scholar
  25. 24.
    J. P. Crutchfield and K. Kaneko, Phys.. Rev. Lett. 60, 2715 (1988).MathSciNetADSCrossRefGoogle Scholar
  26. 25.
    A. J. Mandell, Physica 27D, 235 (1987).MathSciNetADSGoogle Scholar
  27. 26.
    R. L. Adler, A. G. Konheim, M. H. McAndrews, Trans. Amer. Math. Soc. 114, 309 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  28. 27.
    D. T. Kaplan: The Dynamics of Cardiac Electrical Instability. PhD Thesis, MIT, 1989.Google Scholar
  29. G. Martin, J. V. Gimeno, J. Cosin, in IEEE Computers in Cardiology (1983) 213.Google Scholar
  30. 30.
    R. Dzwonczyk, C. G. Brown, H. A. Werman, IEEE Trans. Biomed. Eng. 37, 640 (1990).CrossRefGoogle Scholar
  31. 31.
    J. P. Zbilut and L. Lawson, Crit. Care Med. 16, (1988).Google Scholar
  32. 32.
    E. Sh. Khalfen and B. M. Temkin, Kardiologiia (Moscow) 9, 32 (1983).Google Scholar
  33. 33.
    J. S. Nicolis, G. Mayer-Kress, G. Haubs, in Stochastic Phenomena and Chaotic Behaviour in Complex Systems, edited by P. Schuster, (Springer, Berlin, 1984).Google Scholar
  34. 34.
    K. Kaneko, in Theory and Applications of Cellular Automata edited by S. Wolfram (World Scientific, Singapore, 1986).Google Scholar
  35. 35.
    K. Kaneko, Physica 34D, 1 (1989).ADSGoogle Scholar
  36. K. Kaneko, Prog. Theor. Phys. Suppl. 99, 263 (1989). Kaneko makes a case for the use of local Lyapunov exponents with transients. A persistent question, however, is how much data is required.Google Scholar
  37. 36.
    G. Mayer-Kress and K. Kaneko, J. Stat. Phys. 54, 1489 (1989).MathSciNetADSCrossRefGoogle Scholar
  38. 37.
    C. H. Bennett, G. Grinstein, Y. He, C. Jayaprakash, D. Mukamel, Phys. Rev. A 41, 1932 (1990).MathSciNetADSCrossRefGoogle Scholar
  39. 38.
    E. Ott, C. Grebogi, J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 39.
    E. G. Lakatta, Perspectives Biol, and Med. 32, 421 (1989).Google Scholar
  41. 40.
    M. J. Lab, Circ. Res. 50, 757 (1982).Google Scholar
  42. 41.
    G. R. Heyndrickx, P. J. Vantrimpont, M. F. Rousseau, H. Pouleur, Amer. J. Physiol. 254, H817 (1988).Google Scholar
  43. 42.
    J.-P. Eckmann, S. Oliffson Kamphorst, and D. Ruelle, Europhysics Lett. 4, 973 (1987).ADSCrossRefGoogle Scholar
  44. 43.
    J. P. Crutchfield, Nuclear Phys. B (Proc. Suppl.) 5A, 287 (1988).ADSCrossRefGoogle Scholar
  45. G. Mayer-Kress and A. Hiibler, in Quantitative Measures of Complex Dynamical Systemsf edited by N. B. Abraham, (Plenum, New York, 1989).Google Scholar
  46. 45.
    J. Theiler, J. Opt. Soc. Am. A 7, 1055 (1990).MathSciNetADSCrossRefGoogle Scholar
  47. 46.
    J. D. Farmer, Physica 4D, 366 (1983). Farmer investigated the infinite dimensional delay equation and found that the entropy could remain constant despite increasing dimension. This, however, may be related to sample size.MathSciNetGoogle Scholar
  48. 47.
    P. Grassberger, in Measures of Complexity, edited by L. Peliti and A; Vulpani, (Springer, New York, 1988). See also C. Webber, Jr., this volumeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J. P. Zbilut
    • 1
    • 2
  1. 1.Departments of Physiology and OR/Surgical NursingRush-Presbyterian-St. Luke’s Medical CenterChicagoUSA
  2. 2.Section of Cardiology, VA Edward HinesJr. HospitalHinesUSA

Personalised recommendations