Spectral Analysis as an Assessment of the Neural Control of the Heart: A Methodological Comparison

  • R. Stark
  • D. Vaitl
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 55)


It is commonly accepted that heart rate variability provides information on the neural control of the heart. Normally, three components are found in the spectrum of the cardiotachogram: A low frequency component (LF) with a frequency around 0.1 Hz, a high frequency component (HF) with a frequency around 0.25 Hz and a third component with a frequency around 0.03 Hz. Different experiments designed to relate the dominant frequency components to the amount of sympathetic and parasympathetic influence on the heart have resulted in contradictory findings. In order to examine the influence of the different methods of spectral analysis on these contradictory findings, we compared three calculatory procedures: FFT, AR1 and AR2. FFT is believed to represent the different methods based on the deterministic Fourier transform whereas AR1 and AR2 are two different versions of autoregressive spectral analysis. The results of our study indicate that the discrepancies of the findings, with respect to the different methods applied, are not caused by differences in the underlying theories (interpretation of the time series as a deterministic or random process), but by the different definitions of LF and HF.


Frequency Component Relative Unit High Frequency Component Neural Control Autoregressive Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Luczak, W. Laurig: Ergonomics 16, 85 (1973)CrossRefGoogle Scholar
  2. 2.
    P. Grossman, S. Svebak: Psychophysiology 24, 228 (1987)CrossRefGoogle Scholar
  3. 3.
    F.M. Fouad, R.C. Tarazi, C.M. Ferrario, S. Fighaly, C. Alicandri: Am. J. Physiol. 246, 838 (1984)Google Scholar
  4. 4.
    B. McA Sayers: Ergonomics 16, 17 (1973)CrossRefGoogle Scholar
  5. 5.
    L.J.M. Mulder. In: J.F. Orlebeke, G. Mulder, L.J.P. van Doornen (ed.): Psychophysiology of cardiovascular control — Models, Methods, and Data. Plenum Press, New York and London, 333 (1985)Google Scholar
  6. 6.
    S. Akselrod, D. Gordon, F.A. Übel, D.C. Shannon, A.C. Barger, R.J. Cohen: Science 213, 220 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    R.I. Kitney, O. Rompelman (eds.): The study of heart-rate variability, Clarendon Press, Oxford (1980)Google Scholar
  8. 8.
    P.M. McCabe, B.G. Yongue, S.W. Porges, P.K. Ackles: Psychophysiology 21, 149 (1984)CrossRefGoogle Scholar
  9. 9.
    B.G. Yongue, P.M. McCabe, S.W. Porges, M. Rivera, S.L. Kelley, P.K. Ackles: Psychophysiology 19, 426 (1982)CrossRefGoogle Scholar
  10. 10.
    P.G. Katona, F. Jih: J. Appl. Physiol. 39, 801 (1975)Google Scholar
  11. 11.
    B. Pomeranz, R.J.B. Macaulay, M.A. Caudill, I. Kutz, D. Adam, D. Gordon, K.M. Kilborn, A.C. Barger, D.C. Shannon, R.J. Cohen, H. Benson: Am. J. Physiol. 248, 151 (1985)Google Scholar
  12. 12.
    G.F. Chess, R.M.K. Tarn, F.R. Calaresu: Am. J. Physiol. 228, 775 (1975)Google Scholar
  13. 13.
    M. Pagani, F. Lombardi, S. Guzzetti, O. Rimoldi, R. Furlan, P. Pizzinelli, G. Sandrone, G. Malfatto, S. Dell’Orto, E. Piccaluga, M. Turiel, G. Baselli, S. Cerutti, A. Malliani: Circulation Research 59, 178 (1986)Google Scholar
  14. 14.
    O. Rimoldi, S. Pierini, A. Ferrari, S. Cerutti, M. Pagani, A. Malliani: Am. J. Physiol. 258, 967 (1990)Google Scholar
  15. 15.
    F. Lombardi, G. Sandrone, S. Pernpruner, R. Sala, M. Garimoldi, S. Cerutti, G. Baselli, M. Pagani, A. Malliani: Am. J. Cardiol 60, 1239 (1987)CrossRefGoogle Scholar
  16. 16.
    S. Guzzetti, E. Piccaluga, R. Casati, S. Cerutti, F. Lombardi, M. Pargani, A. Malliani: J. Hypertension 6, 711 (1988)CrossRefGoogle Scholar
  17. 17.
    M. Pagani, F. Lombardi, S. Guzzetti, G. Sandrone, O. Rimoldi, G. Malfatto, S. Cerutti, A. Malliani: J. Hypertension 2, 383 (1984)Google Scholar
  18. 18.
    R. I. Kitney, S. Byrne, M.E. Edmonds, P.J. Watkins, V.C. Roberts: Automedica 4, 155 (1982)Google Scholar
  19. 19.
    T. J. Van Den Akker, A.S.M. Koeleman, L.A.H. Hogenhuis, O. Rompelman: Automedica 4, 201 (1983)Google Scholar
  20. 20.
    G. Mulder. In: J.F. Orlebeke, G. Mulder, L.J.P. van Doornen (ed.): Psyehophysiology of cardiovascular control — Models, Methods, and Data. Plenum Press, New York and London, 407 (1985)Google Scholar
  21. 21.
    W. Kuhmann, H. Lachnit, D. Vaiti. In: A. Steptoe, H. Ruddel, H. Neus (eds.): Clinical and methodological issues in cardiovascular psyehophysiology, Springer, Heidelberg, 45 (1985)CrossRefGoogle Scholar
  22. 22.
    LJ.M. Mulder, H.J. Van Dellen, P. Van der Meulen, B. Opheikens. In: FJ. Maarse, L.J.M. Mulder, W.S. Sjouw, A. Akkerman (eds.): Computers in Psychology: Methods, Instrumentation & Psychodiagnostics, 39, Lisse: Swets & Zeitlinger (1988)Google Scholar
  23. 23.
    G.E.P. Box, G.M. Jenkins: Time series analysis — forecasting and control, Holden- Day, Oakland, California (1976)Google Scholar
  24. 24.
    H. Akaike: The Statistician 27, 217 (1978)MathSciNetCrossRefGoogle Scholar
  25. 25.
    F. Bartoli, G. Baselli, S. Cerutti. In: Computers in Cardiology. Silver Spring, MD: IEEE Computer Soc., 485 (1982)Google Scholar
  26. L.H. Zetterberg: Mathematical Biosciences 5, 227 (1969)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • R. Stark
    • 1
  • D. Vaitl
    • 1
  1. 1.Department of Clinical PsychologyUniversity of GiessenGiessenGermany

Personalised recommendations