Physiology of Rhythms and Control Systems: An Integrative Approach

  • H. P. Koepchen
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 55)


There is a broad spectrum of physiological rhythms in many different systems extending over a large range of frequencies. Hie medium ultradian frequency range is characterized by relatively great variability of frequency, intense mutual interactions and interference with the homeostatic feedback regulatory circuits and behavioral influences. In spite of the resulting multiform phenomenology, certain basic rules of “relative” sliding coordination between the subunits of one system, and between the systems themselves can be identified. They are revealed through certain kinds of mutual entrainment, the occurrence of multiple integer frequency relations, instability of phases and amplitudes during transitory states, rhythm- related excitability cycles, and through variable periods of synchronization and desynchronization. This principle is illustrated by respiratory, vascular, cardiovascular and motor rhythms and their interaction found in anaesthetized animals and in man. The fact that the same general kind of rhythm coordination is found, irrespective of the particular system and frequency range, justifies the hope of a successful analysis and understanding of rhythmicity as a basic principle of physiological self-organization. In view of their general validity, irrespective of the particular physical or living system under investigation, the concepts and analytical tools of synergetics will play a key role in future research of this whole subject.


Biological Rhythm Respiratory Rhythm Power Spectrum Analysis Physiological Rhythm Heart Rate Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koepchen HP (1962) Die Blutdruckrhythmik. Dr Dietrich Steinkopff Verlag, DarmstadtGoogle Scholar
  2. 2.
    Koepchen HP (1984) History of Studies and Concepts of Blood Pressure Waves. In: Miyakawa K, Koepchen HP, Polosa C (eds) Mechanisms of Blood Pressure Waves. Japan Scientific Societies Press, Tokyo. Springer, Berlin Heidelberg New York Tokyo, pp 3–23Google Scholar
  3. 3.
    Koepchen HP, Abel HH, Klüßendorf D, Lazar H (1986) Respiratory and Cardiovascular Rhythmicity. In: Von Euler C, Lagercrantz H (eds) Neurobiology of the Control of Breathing. Raven Press, New York, pp 303–312Google Scholar
  4. 4.
    Hering E (1869) Über Atembewegungen des Gefäßsystems. Sber Akad Wiss, Wien, Math naturwiss Kl 2. Abt. 60:829Google Scholar
  5. 5.
    Siegel G, Hofer HW, Schnalke F, Adler A, Walter A, Koepchen HP (1989) Membrane Physiological Basis of Vascular Autorhythmicity. Prog Appl Microcirc 15:10–31Google Scholar
  6. 6.
    Golenhofen K (1970) Slow Rhythms in Smooth Muscle (Minute-Rhythm). In: Bülbring E, Shuba MF (eds) Smooth Muscle. Edward Arnold, LondonGoogle Scholar
  7. 7.
    Seller H, Langhorst P, Polster J, Koepchen HP (1967) Zeitliche Eigenschaften der Vasomotorik. II. Erscheinungsformen und Entstehimg spontaner und nervös induzierter Gefäßrhythmen. Pfluegers Arch 296:110–132CrossRefGoogle Scholar
  8. 8.
    Von Holst E (1939) Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Erg Physiol 42:228–306Google Scholar
  9. 9.
    Ludwig C (1847) Beiträge zur Kenntnis des Einflusses der Respirationsbewegungen auf den Blutumlauf im Aortensystem. Arch Anat Physiol, pp 242–302Google Scholar
  10. 10.
    von Haller A (1760) Elementa physiologica. T II Lit VI, Lausanne, p 330Google Scholar
  11. 11.
    Haken H (1983) Synergetics: An Introduction. 3rd ed. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  12. 12.
    Koepchen HP (1976) Quantitative Approach to Neural Control of Ventilation. In: Loeschcke HH (ed) Acid Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System. Thieme, Stuttgart, pp 164–186Google Scholar
  13. 13.
    von Euler C (1986) Brain Stem Mechanisms for Generation and Control of Breathing Pattern. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of Physiology, section 3: The Respiratory System, vol II: Control of Breathing, part 1, Bethesda, Am Physiol Soc, pp 1–67Google Scholar
  14. 14.
    Richter DW (1982) Generation and Maintenance of the Respiratory Rhythm. J Exp Biol 100:93–107Google Scholar
  15. 15.
    Koepchen HP, Klüßendorf D, Lazar H, Hukuhara T, Abel HH (1985) Conclusions on Respiratory Rhythmogenesis Drawn from Lesion and Cooling Experiments Predominantly m the Region of Ventrolateral Nucleus of Solitary Tract (vlNTS). In: Bianchi AI, Denavit-Saubie M (eds) Neurogenesis of Central Respiratory Rhythm. MTP Press Ltd, Lancaster Boston The Hague Dordrecht, pp 77–80Google Scholar
  16. 16.
    Koepchen HP, Lazar H, Klüßendorf D, Hukuhara T (1986) ‘Medullary Apneusis’ by Lesions and Cooling in the Ventrolateral Solitary Tract Region and Genesis of Respiratory Rhythm. J Autonom Nerv Syst, Suppl 63–69Google Scholar
  17. 17.
    Koepchen HP, Klüßendorf D, Sommer D (1981) Neurophysiological Background of Central Neural Cardiovascular-Respiratory Coordination: Basic Remarks and Experimental Approach. J Autonom Nerv Syst 3:335–368CrossRefGoogle Scholar
  18. 18.
    Koepchen HP (1983) Respiratory and Cardiovascular “Centres”: Functional Entirety of Separate Structures? In: Schläfke ME, Koepchen HP, See WR (eds) Central Neurone Environment and the Control Systems of Breathing and Circulation. Springer, Berlin Heidelberg New York, pp 221–237Google Scholar
  19. 19.
    Koepchen HP, Abel HH, Klüßendorf D (1987) Integrative Neurovegetative and Motor Control: Phenomena and Theory. Funct Neurol 2,4:389–406Google Scholar
  20. 20.
    Haken H, Kelso JAS, Bunz H (1985) A Theoretical Model of Phase Transitions in Human Hand Movements. Biol Cybern 51:347–356MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Penaz J, Roukens J, van der Waal HJ (1968) Spectral Analysis of Some Spontaneous Rhythms in the Circulation. Biokyberaetic 1:233–236Google Scholar
  22. 22.
    Pagani M, Lombardi F, Guzzetti S, Rimoldo O, Furlan R, Pizinelli P, Sondrone G, Malfatto G, Dell’Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A (1986) Power Spectral Analysis of Heart Rate and Arterial Pressure Variabilities as a Marker of Sympatho-Vagal Interaction in Man and Conscious Dog. Circ Res 59:178–193Google Scholar
  23. 23.
    Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ (1981) Power Spectrum Analysis of Heart Rate Fluctuation: A Quantitative Probe of Beat-to-Beat Cardiovascular Control. Science 213:220–222ADSCrossRefGoogle Scholar
  24. 24.
    Abel HH, Klüßendorf D, Droh R, Koepchen HP (1991) Cardiorespiratory Relations in Human Heart Rate Pattern. In: Koepchen HP, Huopaniemi T (eds) Cardiorespiratory and Motor Coordination. Springer, Berlin Heidelberg New York (in press)Google Scholar
  25. 25.
    Koepchen HP, Wagner PH, Lux HD (1961) Über die Zusammenhänge zwischen zentraler Erregbarkeit, reflektorischem Tonus und Atemrhythmus bei der nervösen Steuerung der Herzfrequenz. Pfluegers Arch 273:443–465CrossRefGoogle Scholar
  26. 26.
    Eckberg DL, Kifle YT, Roberts VL (1980) Phase Relationship between Normal Human Respiration and Baroreflex Responsiveness J Physiol 304:489–502Google Scholar
  27. 27.
    Seller H, Langhorst P, Richter D, Koepchen HP (1968) Über die Abhängigkeit der pressorezeptorischen Hemmung des Sympathikus von der Atemphase undihre Auswirkung in der Vasomotorik. Pfluegers Arch 302:300–314CrossRefGoogle Scholar
  28. 28.
    Langhorst P, Schulz B, Schulz G, Lambertz M (1983) Reticular Formation of the Lower Brainstem. A Common System for Cardiorespiratory and Somatomotor Functions: Discharge Pattern of Neighbouring Neurons Influenced by Cardiovascular and Respiratory Arferents. J Aut Nerv Syst 9:411–432CrossRefGoogle Scholar
  29. 29.
    Koepchen HP, Lux HD, Wagner PH (1961) Untersuchungen über Zeitbedarf und zentrale Verarbeitung des pressorezeptorischen Herzreflexes. Pfluegers Arch 273:413–430CrossRefGoogle Scholar
  30. 30.
    Abel HH, Klüßendorf D, Koepchen HP (1989) Relation between Tone and Rhythmicity of Cardiac Chronotropic Innervation. Pfluegers Arch 423 (Suppl 1): R11 [Abstract]Google Scholar
  31. 31.
    Schmidt-Vanderheyden W, Heinich L, Koepchen HP (1970) Investigations into the Fluctuations of Proprioceptive Reflexes in Man. I. Fluctuations of tne Patellar Tendon Reflex and Their Relation to the Vegetative Rhythms during Spontaneous Respiration. Pfluegers Arch 317:56–71CrossRefGoogle Scholar
  32. 32.
    Schmidt-Vanderheyden W, Koepchen HP (1970) Investigations into the Fluctuations of Proprioceptive Reflexes in Man. II. Fluctuations of the Patellar Tendon Reflex and Their Relation to Vegetative Rhythms during Controlled Respiration. Pfluegers Arch 317:72–83CrossRefGoogle Scholar
  33. 33.
    Koepchen HP (1969) Vegetative-Somatic Relationships in Single Neuron Activity in the Lower Brain Stem. In: Evans CR, Mulholland TB (eds) Attention in Neurophysiology, Butterworth, London, pp 83–99Google Scholar
  34. 34.
    Koepchen HP, Langhorst P, Seller H (1975) The Problem of Identification of Autonomic Neurons in the Lower Brain Stem. Brain Res 87:375–393CrossRefGoogle Scholar
  35. 35.
    Koepchen HP, Seller H, Polster J, Langhorst P (1968) Über die Feinvasomotorik der Muskelstrombahn und ihre Beziehung zur Ateminnervation. Pfluegers Arch 302:285–299Google Scholar
  36. 36.
    Koepchen HP, Sommer D, Frank Ch, Klüßendorf D, Forstreuter K (1979) Characteristics and Functional Significance of the Expiratory Bulbar Neuron Pools. In: Von Etiler C, Lagercrantz H (eds) Central Nervous Control Mechanisms in Breathing. Pergamon Press, Oxford New York, pp 217–232Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • H. P. Koepchen
    • 1
  1. 1.Institute of PhysiologyThe Free University of BerlinBerlin 33Germany

Personalised recommendations