Advertisement

Free Radical Reactions in the Pathomechanism of Amiodarone Liver Toxicity

  • A. Vereckei
  • E. Fehér
  • A. Blázovics
  • J. György
  • H. Toncser
  • J. Fehér

Abstract

Amiodarone (AMI) is one of our most potent antiarrhythmic drugs, with special chemical, pharmacokinetic, and electrophysiological properties. It is effective in arrhythmias originating from every part of the myocardium, applicable in grave, perilous rhythm disturbances (e.g., refractory ventricular tachycardia, atrial fibrillation with a high ventricular rate associated with anterograde Kent bundle conduction, and refractory supraventricular tachycardia). AMI treatment is the only therapeutic approach capable of preventing or at least significantly reducing the incidence of sudden death in hypertrophic obstructive cardiomyopathy in low doses. In survivors of sudden arrhythmic death — the group which is considered to be the most rigorous test of an antiarrhythmic agent — AMI treatment was effective in the significant reduction of mortality in contrast to the failure of conventional antiarrhythmic drugs. A further great advantage of AMI compared to other antiarrhythmic agents is that it has only insignificant proarrhythmic activity, and can be safely administered to patients with decreased left ventricular function [27, 28, 11].

Keywords

Liver Homogenate Free Radical Reaction Pulse Radiolysis Lysosomal Membrane Permeability Foamy Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett AJ (1972) Assay method of lysosomal enzymes. In: Lysosomas, a laboratory handbook. Dingle AmsterdamGoogle Scholar
  2. 2.
    Bennett PB, Kabalka G, Kennedy TP, Woosley RL, Hondeghem LM (1987) An amiodarone derivative with reduced toxicity and Na-channel blocking properties. Circulation 76 Suppl IV: IV - 150Google Scholar
  3. 3.
    Berger Y, Harris L (1986) Pharmacokinetics. In: Harris L, Roncucci R (eds) Amiodarone. Pharmacology — pharmacokinetics — toxicology, clinical effect. MEDSI, Paris, pp 46–98Google Scholar
  4. 4.
    Blazovics A, Somogyi A (1988) The role of free radical reactions in experimental hyperlipidemia and athero-sclerosis. Thesis, Budapest.Google Scholar
  5. 5.
    Blazovics A, Somogyi A, Lengyel G, Lang I, Feher J (1988) Inhibition of lipid peroxidation by dihydroquinoline-type antioxidant (CH 402). Free Radic Res Commsun, 4: 409–413CrossRefGoogle Scholar
  6. 6.
    Blazovics A, Gyorgy I, AJN Zsinka A, Biacs P, Foldiak G, Feher J (1989) In vitro scavenger effect of dihydroquinoline type derivates in different free radical generating systems. Free Radic Res Commun 6: 217–226PubMedCrossRefGoogle Scholar
  7. 7.
    Bogl W, Heide L (1985) Chemiluminescence measurements as an identification method for gamma-irradiated foodstuffs. Radiats Fiz Chem 25: 173–185Google Scholar
  8. 8.
    Brunk U (1988) The potential intermediate role of lysosomes in oxygen free radical pathology. APMIS 96: 3–13PubMedCrossRefGoogle Scholar
  9. 9.
    Cadenas E, Sies H (1984) Low level chemiluminescence as an indicator of singlet molecular oxygen in biological systems. Methods Enzymol 105: 221–231PubMedCrossRefGoogle Scholar
  10. 10.
    Costa-Jussa FR, Corrin B, Jacobs JM (1984) Amiodarone lung toxicity: a human and experimental study. J Pathol 143: 73–79CrossRefGoogle Scholar
  11. 11.
    Counihan PJ, Mc Kenna WJ (1989) Low dose amiodarone for the treatment of arrhythmias in hypertrophic cardiomyopathy. J Clin Pharmacol 29: 436–438PubMedGoogle Scholar
  12. 12.
    Feher J, Toncsev H, Feher E, Kiss A, Vasadi A (1981) Lysosomal enzymes in sera and granulocytes of patients with chronic liver diseases. Int J Tissue React III (1): 31–37Google Scholar
  13. 13.
    Feher J, Csomos G, Vereckei A (1987) Free radical reactions in medicine. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  14. 14.
    Guigui B, Perrot S, Berry JP, Fleury-Feith J, Martin N, Metreau JM, Dhumeaux D, Zafrani ES (1988) Amiodarone-induced hepatic phospholipoidosis: a morphological alteration independent of pseudoalcoholic liver disease. Hepatology 8: 1063–1068PubMedCrossRefGoogle Scholar
  15. 15.
    Gutteridge JMC (1987) Lipid peroxidation: some problems and concepts. In: Oxygen radicals and tissue injury. Proceedings of a Brook Lodge Symposium Augusta, Michigan, USA, April 27-29, 1987, p 9–19Google Scholar
  16. 16.
    Gyorgy I, Foldiak G (1988) Formation and decay of phenoxyl radicals: variation with p and pulse dose. J Radioanal Nucl Chem 122: 207CrossRefGoogle Scholar
  17. 17.
    Harris L, Michat L (1986) Clinical efficacy-arrhythmias In: Harris L, Roncucci R (eds) Amiodarone. Pharmacology-pharmacokinetics-toxicology-clinical effects. MEDSI, Paris, pp 137–162Google Scholar
  18. 18.
    Hassan T, Kochevar IE, Abdulah D (1984) Amiodarone photoxicity to human erythrocytes and lymphocytes. Photochem Photobiol 40: 715–719CrossRefGoogle Scholar
  19. 19.
    Jansson J, Schenkman JB (1977) Studies on three microsomal electron transfer enzyme systems (specificity of electron flow pathways). Arch Biochem Biophys 178: 89–107PubMedCrossRefGoogle Scholar
  20. 20.
    Jordan RA, Schenkman JB (1982) Relationship between malondialdehyde production and arachidonate consumption during NADPH-supported microsomal lipid peroxidation. Biochem Pharmacol 31: 1393–1400PubMedCrossRefGoogle Scholar
  21. 21.
    Kennedy TP, Gordon GB, Paky A, Mc Shone A, Adkinson NF Jr, Peters SP, Friday K, Jackman W, Sciuto AM, Gurtner GH (1988) Amiodarone causes acute oxidant lung injury in ventilated and perfused rabbit lungs. J Cardiovasc Pharmacol 12: 23–36PubMedCrossRefGoogle Scholar
  22. 22.
    Latini R, Bizzi A, Cini M, Veneroni E, Marchi S, Riva E (1987) Amiodarone and desethylamiodarone tissue uptake in rats chronically treated with amiodarone is non-linear with the dose. J Pharm Pharmacol 39: 426–431PubMedCrossRefGoogle Scholar
  23. 23.
    Li ASW, Chignell CF (1987) Spectroscopic studies of cutaneous photosensitizing agents - IX. A spin trapping study of the photolysis of amiodarone and desethylamiodarone. Photochem Photobiol 45: 191–197Google Scholar
  24. 24.
    Lowry AH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagents. J Biol Chem 193: 265–275PubMedGoogle Scholar
  25. 25.
    Martin WJ, Rosenow EC (1988a) Amiodarone pulmonary toxicity. Recognition and pathogenesis (part 1). Chest 93: 1067–1075PubMedCrossRefGoogle Scholar
  26. 26.
    Martin WJ, Rosenow EC (1988b) Amiodarone pulmonary toxocity. Recognition and pathogenesis (part 2). Chest 93: 1242–1248PubMedCrossRefGoogle Scholar
  27. 27.
    Mason JW (1987) Amiodarone. N Engl J Med 316: 455–466CrossRefGoogle Scholar
  28. 28.
    Nademanee K, Stevenson W, Weiss J, Singh BN (1988) The role of amiodarone in the survivors of sudden arrhythmic deaths. In: Singh BN (ed) Control of cardiac arrhythmias by lengthening repolarization. Futura Mount Kisco, New York, pp 429–508Google Scholar
  29. 29.
    Nasch T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55: 416–421Google Scholar
  30. 30.
    Ottolenghi A (1959) Interaction of ascorbic acid on mitochondrial lipids. Arch Biochem Biophys 79: 355–363CrossRefGoogle Scholar
  31. 31.
    Paillous N, Verrier M (1988) Photolysis of amiodarone, an antiarrhythmic drug. Photochem Photobiol 47: 337–343PubMedCrossRefGoogle Scholar
  32. 32.
    Rakita L, Sobol SM, Mostow N, Vrobel T (1983) Amiodarone pulmonary toxicity. Am Heart J 106: 906–915PubMedCrossRefGoogle Scholar
  33. 33.
    Ratliff NB, Estes ML, Myles JL, Shirey EK, McMahon JT (1987) Diagnosis of chloroquine cardiomyopathy by endomyocardial biopsy. N Engl J Med 316: 191–193PubMedCrossRefGoogle Scholar
  34. 34.
    Rigas B, Rosenfeld LE, Barwick KW, Enriquez R, Helzberg J, Batsford WP, Josephson ME, Riely CA (1986) Amiodarone hepatotoxicity. Ann Intern Med 104: 348–351PubMedGoogle Scholar
  35. 35.
    Satoh K (1978) Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta 90: 37–43PubMedCrossRefGoogle Scholar
  36. 36.
    Simon JB, Manley PN, Brien JF, Armstrong PW Amiodarone hepatotoxicity simulating alcoholic liver disease. N Engl J Med 311: 167–172Google Scholar
  37. 37.
    Somani P (1989) Basic and clinical pharmacology of Amiodarone: relationship of antiarrhythmic effects, dose and drug concentrations to intracellular inclusion bodies. J Clin Pharmacol 29: 405–412PubMedGoogle Scholar
  38. 38.
    Sugioka K, Nakano M (1976) A possible mechanism of the generation of singlet oxygen in NADPH-dependent microsomal lipid peroxidation. Biochem Biophys Acta 423: 213–216Google Scholar
  39. 39.
    Tappel AL (1973) Lipid peroxidation damage to cell components. Fed Proc 32: 1870–1874PubMedGoogle Scholar
  40. 40.
    Tigyi A, Zsoldos T, Montsko T (1984) The pathogenesis of experimental silicosis “Free radicals and tissue damage”. Scientific sesssion. Pecs, 10–11, January 1984Google Scholar
  41. 41.
    Toncsev H, Frenkl R (1984) Studies on the lysosomal enzyme system of the liver in rats undergoing swimming training. Int J Sports Med 5: 152–155PubMedCrossRefGoogle Scholar
  42. 42.
    Vrobel TR, Miller PE, Mostow ND, Rakita L (1989) A general overview of amiodarone toxicity: its prevention, detection, and management. Prog Cardiovasc Dis 31: 393–426PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • A. Vereckei
  • E. Fehér
  • A. Blázovics
  • J. György
  • H. Toncser
  • J. Fehér

There are no affiliations available

Personalised recommendations