Skip to main content

Mechanismen der Kraftentwicklung im Muskel

  • Chapter
  • 91 Accesses

Zusammenfassung

Die Muskeln sind das am weitaus stärksten ausgebildete Organ des Menschen, sie sind gleichsam Maschinen, die während ihrer Tätigkeit chemische Energie direkt in mechanische Energie und Wärme umwandeln. Das Adenosintriphosphat (ATP) ist die unmittelbare Energiequelle der Kontraktion. Es wird im Muskel durch das Enzym Myosin hydrolytisch gespalten und damit energetisch verwertet. Dieser Prozeß wird durch ein anderes Protein, das Aktin, beschleunigt Aktin- und Myosinfilamente sind die unmittelbar am Kontraktionsprozeß beteiligten Proteinstrukturen: Die Muskelfasern verkürzen sich durch das Übereinandergleiten der Aktin- und Myosinfilamente; die Zugkräfte für diesen Verschiebeprozeß stammen von den Myosinköpfchen, die als Querbrücken und sozusagen als „molekulare Kraftgeneratoren“ fungieren.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adelstein RS, Eisenberg E (1980) Regulation and kinetics of the actin-myosin-ATP interaction. Ann Rev Biochem 49:912–956

    Article  Google Scholar 

  • Audemard E, Bertrand R, Bonet A, Chaussepied P, Momet D (1988) Pathway for the communication between the ATPase and actin sites in myosin. J Muscle Res Cell Motil 9:197–218

    Article  PubMed  CAS  Google Scholar 

  • Brenner B (1988) Effect of Ca2+ on cross-bridges turnover kinetics in skinned single rabbit psoas fibres: implications for regulation of muscle contraction. Proc Natl Acad Sci 85:3265–3269

    Article  PubMed  CAS  Google Scholar 

  • Brenner B, Morano I (1990) Effects of myosin light chain phosphorylation on isometric force and cross-bridge turnover kinetics. Pfliigers Arch 415/1:R 73

    Google Scholar 

  • Chalovich JM, Chock PB, Eisenberg E (1981) Mechanism of action of troponin-tropomyosin. J Biol Chem 256:575–578

    PubMed  CAS  Google Scholar 

  • Chalovich JM, Eisenberg E (1982) Inhibition of actomyosin ATPase-activity by troponintropomyosin without blocking the binding of myosin to actin. J Biol Chem 257:2431–2437

    Google Scholar 

  • Eisenberg E, Hill TL (1985) Muscle contraction and free energy transduction in biological systems. Science 227:999–1006

    Article  PubMed  CAS  Google Scholar 

  • Elliott A, Offer G (1978) Shape and flexibility of the myosin molecule. J Mol Biol 123:505–519

    Article  PubMed  CAS  Google Scholar 

  • Frearson N, Peirie VS (1975) Phosphorylation of the light-chain components of myosin from cardiac and red skeletal muscles. Biochem J 151:99–107

    PubMed  CAS  Google Scholar 

  • Haselgrove JC (1973) X-ray evidence for the conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harb Symp Quant Biol 37:341–352

    CAS  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Chem 7:255–318

    CAS  Google Scholar 

  • Huxley AF, Niedergerke R (1954) Interference microscopy of living muscle fibers. Nature 173:9871–973

    Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF, Simmons RM (1973) Mechanical transients and the origin of muscle force. Cold Spring Harb Symp Quant Biol 37:669–680

    CAS  Google Scholar 

  • Huxley HE (1973) Structural changes in the actin- and myosin-containing filaments during contraction. Cold Spring Harb Symp Quant Biol 37:361–376

    CAS  Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    Article  PubMed  CAS  Google Scholar 

  • Keane AM, Trayer IP, Levine BA, Zeugner C, Rtiegg JC (1990) Peptide mimetics of an actin-binding site on myosin span two functional domains on actin. Nature 344:265–268

    Article  PubMed  CAS  Google Scholar 

  • Kress M, Huxley HE, Faruqi AR, Hendrix J (1986) Structural changes during activation of frog muscle studied by time-resolved X-ray diffraction. J Mol Biol 188:325–342

    Article  PubMed  CAS  Google Scholar 

  • Kushmerick MJ (1983) Energetics of muscle contraction. In: Peachey LD, Adrian RH, Geiger SR (eds) Skeletal muscle. Am Physiol Soc, Bethesda MD (Handbook of physiology, sect 10, pp 189–236)

    Google Scholar 

  • Leinwand LA, Saez L, McNally E, Nadal-Ginard B (1983a) Isolation and characterization of human myosin heavy chain genes. Proc Natl Acad Sci 80:3719–3720

    Article  Google Scholar 

  • Leinwand LA, Fournier REK, Nadal-Ginard B, Shows TB (1983b) Multiple family for sarcomeric myosin heavy chain in mouse and human DNA: localization on a single chromosome. Science 221:766–769

    Article  PubMed  CAS  Google Scholar 

  • Lowey S, Slayter HS, Weeds AG, Baker H (1969) Substructure of the myosin molecule. I. Subfragments of myosin by enzymatic degradation. J Mol Biol 42:1–29

    Article  PubMed  CAS  Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624

    Article  PubMed  CAS  Google Scholar 

  • Manning D, Stull J (1982) Myosin light chain phosphorylation-dephosphorylation in mammalian skeletal muscle. Am J Physiol 242:C234-C241

    PubMed  CAS  Google Scholar 

  • Morano I, Hofmann F, Zimmer M, Rtiegg JC (1985) The influence of P-light chain phosphorylation by myosin light chain kinase on the calcium sensitivity of chemically skinned heart fibres. FEBS Lett 189:221–224

    Article  PubMed  CAS  Google Scholar 

  • Morano I, Bachle-Stolz C, Katus A, Rtiegg JC (1988a) Increased calcium sensitivity of chemically skinned human atria by myosin light chain kinase. Basic Res Cardiol 83:350–359

    Article  PubMed  CAS  Google Scholar 

  • Morano I, Piazessi G, Rtiegg JC (1988b) Myofibrillar calcium sensitivity modulation: influence of light chain phosphorylation and positive inotropic drugs on skinned frog skeletal muscle. In: Sugi H, Pollack GH (eds) Molecular mechanism of muscle contraction. Plenum, New York London

    Google Scholar 

  • Morano I, Bletz C, Wojciechowski R, Rtiegg JC (in press) Modulation of crossbridge kinetics by myosin isoenzymes in skinned human heart fibers. Circ Res 68

    Google Scholar 

  • Perrie WT, Smillie LB, Perry SV (1973a) A phosphorylated light chain component of myosin from skeletal muscle. Biochem J 135:151–164

    PubMed  CAS  Google Scholar 

  • Perrie WT, Smillie LB, Perry SV (1973b) A phosphorylated light chain component of myosin from skeletal muscle. Biochem J 135:151–164

    PubMed  CAS  Google Scholar 

  • Persechini A, Stull JT, Cooke R (1985) The effect of myosin phosphorylation on the contractile properties of skinned skeletal muscle fibers. J Biol Chem 260:7951–7954

    PubMed  CAS  Google Scholar 

  • Podolski RJ, Teichholz LE (1970) The relation between calcium and contraction kinetics in skinned muscle fibers. J Physiol 211:19–35

    Google Scholar 

  • Ruegg JC (1988) Calcium in muscle activation. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Stein LA, Schwartz RP, Chock PB, Eisenberg E (1979) Mechanism of actomyosin adenosine triphosphatase. Evidence that adenosine 5’-triphosphatase hydrolysis can occur without dissociation of the actomyosin complex. Biochemistry 18:3895–3909

    Article  PubMed  CAS  Google Scholar 

  • Sutoh K (1983) Mapping of actin-binding sites in the heavy chain of myosin subfragments. Biochemistry 22:1579–1585

    Article  PubMed  CAS  Google Scholar 

  • Vibert P, Cohen C (1988) Domains, motions and regulation in the myosin head. J Muscle Res Cell Motil 9:296–305

    Article  PubMed  CAS  Google Scholar 

  • Weeds AG, Lowey S (1971) Substructure of the myosin molecule. J Mol Biol 61:701–725

    Article  PubMed  CAS  Google Scholar 

  • Westwood SA, Hudlicka O, Perry SV (1984) Phosphorylation in vivo of the P-light chain of myosin in rabbit fast and slow skeletal muscles. Biochem J 218:841–847

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morano, I., Rüegg, J.C. (1991). Mechanismen der Kraftentwicklung im Muskel. In: Weiß, M., Rieder, H. (eds) Sportmedizinische Forschung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76858-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76858-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76859-0

  • Online ISBN: 978-3-642-76858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics