Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 94))

Abstract

Ingold (1942, 1975) and other early students of aquatic hyphomycetes (e.g. Petersen 1962, 1963a,b, Nilsson 1964) quickly established that these fungi are most common and most diverse in clean, well-oxygenated streams running through forests. Human activities will modify these conditions. Some of the changes may be beneficial to the fungi; more realistically, one would expect a usually deleterious balance between positive and negative effects. Thus, removing a few riparian trees will lower the food base of the fungi and of leaf-shredding invertebrates. It is conceivable that, on balance, the fungi might gain more by being less exposed to the invertebrates than by losing substrata. But drastic reductions in the riparian vegetation result in a clear impoverishment of the fungal community (Metvalli and Shearer 1989; Chergui 1990; Chap. -3). It is due to the dilution of available food resources. A similar effects occurs naturally when the river widens (Nilsson 1964; Chauvet 1989), since leaf input is related primarily to the length of the river edge, while water volume increases with river width (Bird and Kaushik 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel TH, Bärlocher F (1984) Effects of cadmium on aquatic hyphomycetes. Appl Environ Microbiol 48: 245–251

    PubMed  CAS  Google Scholar 

  • Abel TH, Bärlocher F (1988) Uptake of cadmium by Gammarus fossarum ( Amphipoda) from food and water. J Appl Ecol 25: 223–231

    Article  CAS  Google Scholar 

  • Albert A (1985) Selective toxicity. Chapman and Hall, New York

    Book  Google Scholar 

  • Au DWT, Hodkiss IJ, Vrijmoed LLP (1990) A study of the colonization of leaf packs in a non-polluted and a polluted stream in Hong Kong. In: Reisinger A, Bresinsky A (eds) Abstr 4th Int Mycological Congr, Regensburg, Botanical Institute, Univ Regensburg p 107

    Google Scholar 

  • Bärlocher F, Kendrick B (1974) Dynamics of the fungal population on leaves in a stream. J Ecol 63: 761–791

    Google Scholar 

  • Bärlocher F, Premdas PD (1988) Effects of pentachlorophenol on aquatic hyphomycetes. Mycologia 80: 135–137

    Article  Google Scholar 

  • Bengtsson G (1982) Patterns of amino acid utilization by aquatic hyphomycetes. Oecologia 55: 355–363

    Article  Google Scholar 

  • Bengtsson G (1983) Habitat selection in two species of aquatic hyphomycetes. Microb Ecol 9: 15–26

    Article  Google Scholar 

  • Bengtsson G (1988) The impact of dissolved amino acids on protein and cellulose degradation in stream waters. Hydrobiologia 164: 97–102

    Article  CAS  Google Scholar 

  • Bird GA, Kaushik NK (1981) Coarse particulate organic matter in streams. In Lock MA, Williams DD (eds) Perspectives in running water ecology. Plenum, New York, pp 41–68

    Google Scholar 

  • Botstrom SL, Johansson RG (1972) Effects of pentachlorophenol on enzymes involved in energy metabolism in the liver of the eel. Comp Biochem Physiol 41: 359–369

    Article  Google Scholar 

  • Brown AWA (1978) Ecology of pesticides. Wiley and Sons, New York

    Google Scholar 

  • Burgos EJ, Castillo PH (1986) Hyphomycetes acuaticos como indicadores de contaminacion. Biota 2: 1–10

    Google Scholar 

  • Cargill AS, Cummins KW, Hanson BJ, Lowry RR (1985) The role of lipids as feeding stimulants for shredding aquatic insects. Freshwater Biol 15: 455–464

    Article  CAS  Google Scholar 

  • Chacko CI, Lockwood JL (1967) Accumulation of DDT and Dieldrin by microorganisms. Can J Microbiol 13: 1123–1126

    Article  PubMed  CAS  Google Scholar 

  • Chandrashekar KR, Kaveriappa KM (1989) Effect of pesticides on the growth of aquatic hyphomycetes. Toxicol Lett 48: 311–315

    Article  PubMed  CAS  Google Scholar 

  • Chauvet E (1989) Production, flux et dĂ©composition des litières en milieu alluvial. Dynamique et rĂ´le des hyphomycètes aquatiques dans le processus de dĂ©composition. Thesis, UniversitĂ© de Toulouse, France

    Google Scholar 

  • Chergui H (1990) The dynamics of aquatic hyphomycetes in an eastern Moroccon stream. Arch Hydrobiol 118: 341–352

    Google Scholar 

  • Collier KJ, Ball OJ, Graesser AK, Main MR, Winterbourn MJ (1990) Do organic and anthropogenic acidity have similar effects on aquatic fauna? Oikos 59: 33–38

    Article  Google Scholar 

  • Conway KE (1970) The aquatic hyphomycetes of central New York. Mycologia 62: 516–530

    Article  Google Scholar 

  • Cserjesi AJ, Roff JW (1975) Toxicity tests of some chemicals against certain wood-staining fungi. Int Biodeterior Bull 11: 90–96

    CAS  Google Scholar 

  • Dalton SA, Hodkinson M, Smith KA (1970) Interactions between DDT and river fungi. I. Effects of p,p’-DDT on the growth of aquatic hyphomycetes. Appl Microbiol 20: 662–666

    PubMed  CAS  Google Scholar 

  • Duddridge JE, Wainwright M (1980) Heavy metal accumulation by aquatic fungi and reduction in viability of Gammarus pulex fed Cd2± contaminated mycelium. Water Res 14: 1605–1611

    Article  CAS  Google Scholar 

  • Field JI, Webster J (1983) Anaerobic survival of aquatic fungi. Trans Br Mycol Soc 81: 365–369

    Article  Google Scholar 

  • Fronda A, Kendrick B (1985) Diquat uptake by four aero-aquatic hyphomycetes. Environ Pollut 37: 229–244

    Article  CAS  Google Scholar 

  • Fronda A, Kendrick B (1986) Effects of food containing diquat on a pond invertebrate, Lymnaea elodes. Arch Hydrobiol 105: 387–395

    CAS  Google Scholar 

  • Gjessing ET (1981) The effect of aquatic humus on the biological availability of cadmium. Arch Hydrobiol 91: 144–149

    CAS  Google Scholar 

  • Greathead SK (1961) Some aquatic hyphomycetes in South Africa. J S Afr Bot 27: 195–228

    Google Scholar 

  • Hodkinson M (1976) Interactions between aquatic fungi and DDT. In: Jones EBG (ed) Recent advances in aquatic mycology. Paul Elek, London, pp 447–467

    Google Scholar 

  • Hodkinson M, Dalton SA (1973) Interactions between DDT and river fungi. II. Influence of culture conditions on the compatability of fungi and p-p-DDT. Bull Environ Contam Toxicol 10: 356–359

    Article  PubMed  CAS  Google Scholar 

  • Hodson PV, Blunt BR (1981) Temperature-induced changes in pentachlorophenol chronic toxicity to early life stages of rainbow trout. Aquat Toxicol 1: 113–127

    Article  CAS  Google Scholar 

  • Holmberg B, Jensen S, Larsson A, Lewander K, Olsson M (1972) Metabolic effects of technical pentachlorophenol (PCP) on the eel Anguilla anguilla. Comp Biochem Physiol 43: 171–183

    CAS  Google Scholar 

  • Hynes HBN (1970) The ecology of running waters. University of Toronto Press, Toronto Ingold CT (1942) Aquatic hyphomycetes of decaying alder leaves. Trans Br Mycol Soc 25: 339–417

    Google Scholar 

  • Ingold CT (1975) An illustrated guide to aquatic and waterborne hyphomycetes (Fungi Imperfecti) with notes on their biology. Freshwater Biol Assoc Sci Publ No 30 Kierstead WG, Bärlocher F Imperfecti) with notes on their biology. Freshwater Biol Assoc Sci Publ No 30

    Google Scholar 

  • Kierstead WG, Bärlocher F (1989) Ecological effects of pentachlorophenol on the brackish-water amphipod Gammarus tigrinus. Arch Hydrobiol 115: 149–156

    CAS  Google Scholar 

  • Kullberg A (1990) The octanol/water partition coefficient in absorptivity of DOC in 10 humic acid and neutral streams in southern Sweden. Verh Int Ver Limnol 24: 169–172

    Google Scholar 

  • Metvalli AA, Shearer CA (1989) Aquatic hyphomycete communities in clear-cut and wooded areas of an Illinois stream. Trans Ill Acad Sci 82: 5–16

    Google Scholar 

  • Mpofu SM (1987) DDT and its use in Zimbabwe. Zimbabwe Sci News 21: 32–36

    Google Scholar 

  • Nakamura Y, Katayama S, Okada Y, Suzuki F, Nagata Y (1981) The isolation and characterization of a cadmium-and zinc-binding protein from Tetrahymena pyriformis. Agric Biol Chem 45: 1167–1172

    Article  CAS  Google Scholar 

  • Nilsson S (1964) Freshwater hyphomycetes: taxonomy, morphology and ecology. Symb Bot Ups 18: 1–130

    Google Scholar 

  • Petersen RC, Persson U (1987) Comparison of the biological effects of humic materials under acidified conditions. Sci Total Environ 62: 387–398

    Article  PubMed  CAS  Google Scholar 

  • Petersen RH (1962) Aquatic hyphomycetes from North America. I Aleuriosporae (Part 1), and key to the genera. Mycologia 54: 117–151

    Article  Google Scholar 

  • Petersen RH (1963a) Aquatic hyphomycetes from North America. II Aleuriosporae (Part 2) and Blastosporae. Mycologia 55: 18–29

    Article  Google Scholar 

  • Petersen RH (1963b) Aquatic hyphomycetes from North America. III Phialosporae and miscellaneous species. Mycologia 55: 570–581

    Article  Google Scholar 

  • Pfaender FK, Alexander M (1972) Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J Agric Food Chem 20: 842–846

    Article  PubMed  CAS  Google Scholar 

  • Pieper HG (1978) Oekophysiologische Untersuchungen an Jugendstadien von Gammarus fossarum. Arch Hydrobiol (Suppl) 54: 257–327

    Google Scholar 

  • Pierce HR, Viktor MD (1978) The fate of pentachlorophenol in an aquatic ecosystem. In: Rao KR (ed) Pentachlorophenol: chemistry, pharmacology and environmental toxicology. Plenum Press, New York, pp 41–52

    Google Scholar 

  • Pignatello J, Martinson MM, Steiert JG, Carlson RE, Crawford RL (1983) Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Appl Environ Microbiol 46: 1024–1031

    PubMed  CAS  Google Scholar 

  • Slâdeckovâ A (1963) Aquatic deuteromycetes as indicators of starch campaign pollution. Int Rev Gesamten Hydrobiol 48: 35–42

    Article  Google Scholar 

  • Suberkropp K (1984) Effect of temperature on seasonal occurrence of aquatic hyphomycetes. Trans Br Mycol Soc 82: 53–62

    Article  Google Scholar 

  • Suberkropp K, Michelis A, Lorch H-J, Ottow JCG (1988) Effect of sewage treatment plant effluents on the distribution of aquatic hyphomycetes in the River Erms, Schwäbische Alb, F.R.G. Aquat Bot 32: 141–153

    Article  Google Scholar 

  • Thompson PL, Bärlocher F (1989) Effect of pH on leaf breakdown in streams and in the laboratory. J N Am Benthol Soc 8: 203–210

    Article  Google Scholar 

  • Van der Merwe WJJ, Jooste WJ (1988) A synecological study of aquatic Hyphomycetes in the Mooi river, western Transvaal, and their significance in the decomposition of allochthonous leaf litter. S Afr J Sci 84: 314–320

    Google Scholar 

  • Van Frankenhuyzen K, Geen GH (1986) Microbe-mediated effects of low pH on availability of detrital energy to a shredder, Clistoronia magnifica ( Trichoptera: Limnephilidae). Can J Zool 64: 421–426

    Article  Google Scholar 

  • Weinbach EC (1956) Pentachlorophenol and mitochondrial adenosinetriphosphatase. J Biol Chem 221: 609–618

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bärlocher, F. (1992). Human Interference. In: Bärlocher, F. (eds) The Ecology of Aquatic Hyphomycetes. Ecological Studies, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76855-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76855-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76857-6

  • Online ISBN: 978-3-642-76855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics