Skip to main content

Research on Aquatic Hyphomycetes: Historical Background and Overview

  • Chapter
The Ecology of Aquatic Hyphomycetes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 94))

Abstract

Aquatic hyphomycetes are fungi that most commonly occur on dead leaves in streams and rivers and sporulate under water. They are also known as freshwater hyphomycetes (Nilsson 1964), amphibious hyphomycetes (Michaelides and Kendrick 1978), or Ingoldian fungi (Webster and Descals 1981). A majority form tetraradiate conidia (essentially with four diverging arms), some produce sigmoid conidia (long, wormlike, generally curved in more than one plane). Some have spores of more conventional shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah SK, Taj-Aldeen SJ (1989) Extracellular enzymatic activity of aquatic and aero-aquatic conidial fungi. Hydrobiologia 174: 217–223

    CAS  Google Scholar 

  • Aimer RD (1989) Ecology of aquatic hyphomycetes in New Zealand streams. Thesis, University of Waikato, New Zealand

    Google Scholar 

  • Ainsworth GC (1976) Introduction to the history of mycology. University of Cambridge Press, Cambridge

    Google Scholar 

  • Ando K, Tubaki K (1984) Some undescribed hyphomycetes in the rain drops from intact leaf-surface. Trans Mycol Soc Jpn 25: 21–37

    Google Scholar 

  • Arnold GRW (1970) Aquatische Hyphomyzeten auf Koniferen Limnologica 7: 381–382

    Google Scholar 

  • Bandoni RJ (1975) Significance of the tetraradiate form in dispersal of terrestrial fungi. Rep Tottori Mycol Inst 12: 105–113

    Google Scholar 

  • Bärlocher F (1981) Fungi on the food and in the faeces of Gammarus pulex. Trans Br Mycol Soc 76: 160–165

    Google Scholar 

  • Bärlocher F (1982) Conidium production from leaves and needles in four streams. Can J Bot 60: 1487–1494

    Google Scholar 

  • Bärlocher F, Kendrick B (1974) Dynamics of the fungal population on leaves in a stream. J Ecol 62: 761–791

    Google Scholar 

  • Bärlocher F, Oertli JJ (1978a) Colonization of conifer needles by aquatic hyphomycetes. Can J Bot 56: 57–62

    Google Scholar 

  • Bärlocher F, Oertli JJ (1978b) Inhibitors of aquatic hyphomycetes in dead conifer needles. Mycologia 70: 964–974

    Google Scholar 

  • Bärlocher F, Rosset J (1981) Aquatic hyphomycete spora in two Black Forest and two Swiss Jura streams. Trans Br Mycol Soc 76: 351–355

    Google Scholar 

  • Bärlocher F, Kendrick B, Michaelides J (1978) Colonization and conditioning of Pinus resinosa needles by aquatic hyphomycetes. Arch Hydrobiol 81: 462–474

    Google Scholar 

  • Bärlocher F, Oertli JJ, Guggenheim R (1979) Accelerated loss of antifungal inhibitors from Pinus leucodermis needles. Trans Br Mycol Soc 72: 277–281

    Google Scholar 

  • Bhat DJ, Chien C-Y (1990) Water-borne hyphomycetes found in Ethiopia. Trans Mycol Soc Jpn 31: 147–158

    Google Scholar 

  • Brutschy A (1927) Tetracladium marchalianum de Wildeman, ein nur wenig beobachteter Wasserpilz. Mikrokosmos 28:145–146

    Google Scholar 

  • Charnier A-C (1985) Cell-wall degrading enzymes of aquatic hyphomycetes: a review. Bot J Linn Soc 91: 67–81

    Google Scholar 

  • Charnier A-C, Dixon PA (1982) Pectinases in leaf degradation by aquatic hyphomycetes: the enzymes and leaf maceration. J Gen Microbiol 128: 2469–2483

    Google Scholar 

  • Charnier A-C, Dixon PA (1983) Effect of calcium ion concentration on leaf maceration by Tetrachaetum elegans. Trans Br Mycol Soc 81: 415–418

    Google Scholar 

  • Charnier A-C, Dixon PA, Archer SA (1984) The spatial distribution of fungi on decomposing alder leaves in a freshwater stream. Oecologia 64: 92–103

    Google Scholar 

  • Chandrashekar KR, Kaveriappa KM (1988) Production of extracellular enzymes by aquatic hyphomycetes. Folia Microbiol 33: 55–58

    CAS  Google Scholar 

  • Chauvet E (1989) Production, flux et dĂ©composition des litières en milieu alluvial. Dynamique et rĂ´le des hyphomycètes aquatiques dans le processus de dĂ©composition. Thesis, Paul Sabatier University, Toulouse

    Google Scholar 

  • Cox PA (1983) Search theory, random motion and the convergent evolution of pollen and spore morphology in aquatic plants. Am Nat 121: 9–31

    Google Scholar 

  • Daniels BA, Menge JA (1980) Hyperparasitism of vesicular-arbuscular mycorrhizal fungi. Phytopathology 70: 584–588

    CAS  Google Scholar 

  • Danninger E, Messner K, Rohr M (1979) Untersuchungen ĂĽber den biologischen Abbau organischer Naturstoffe durch aquatische Hyphomyzeten. Zentralbl Bakteriol Hyg 1 Abt Orig B 169: 282–286

    CAS  Google Scholar 

  • Deighton FC (1972) Mycocentrospora,a new name for Centrospora Neerg. Taxon 21: 716

    Google Scholar 

  • Deighton FC, Mulder JL (1977) Mycocentrospora acerinaas a human pathogen. Trans Br Mycol Soc 69:326–327

    Google Scholar 

  • De Wildeman E (1893) Notes mycologiques. Fasc II Ann Soc Belge Microscopie 17: 35–68

    Google Scholar 

  • De Wildeman E (1894) Notes mycologiques. Fasc III Ann Soc Belge Microscopie 18: 135–161

    Google Scholar 

  • De Wildeman E (1895) Notes mycologiques. Fasc II Ann Soc Belge Microscopie 19: 193–206

    Google Scholar 

  • Dick MW, Pegler DN, Sutton BC (1985) Contributions to mycology. Acad Press, New York

    Google Scholar 

  • Dudka IA (1985) Aquatic Fungi imperfecti from the Soviet Union. Ukrainian Academy of Science, Kiev

    Google Scholar 

  • Engblom E, Lingdell P-E, Marvanovâ L, MĂĽller-Haeckel A (1986) Foam spora in running waters of southern Greenland. Polar Res 4: 47–51

    Google Scholar 

  • Findlay SEG, Arsuffi TL (1989) Microbial growth and detritus transformations during decomposition of leaf litter in a stream. Freshwater Biol 21: 261–269

    Google Scholar 

  • Fisher PI, Davey RA, Webster J (1983) Degradation of lignin by aquatic and aeroaquatic hyphomycetes. Trans Br Mycol Soc 80: 166–168

    CAS  Google Scholar 

  • Fisher J, Webster J, Petrini O (1991) Aquatic hyphomycetes and other fungi in living aquatic and terrestrial roots of Alnus glutinosa. Mycol Res 95: 543–547

    Google Scholar 

  • Fragoso GR (1920) Nuevo genero y especie de hifal sobre hojas de Sphagnum. Bol Soc Esp Hist Nat 20: 112–114

    Google Scholar 

  • Grove WB (1912) New or noteworthy fungi — Part IV. J Bot (London) 50: 9–18

    Google Scholar 

  • Hartig R (1880) Der Ahornkeimlingspilz, Cercospora acerina. Untersuch Forstbotan Inst, MĂĽnchen, 1: 58–61

    Google Scholar 

  • Huber-Pestalozzi G (1925) Zur Morphologie und Entwicklungsgeschichte von Asterothrix (Cerasterias) raphidioides (Rheinsch) Printz. Hedwigia 65: 169–178

    Google Scholar 

  • Huber-Pestalozzi G (1938) Das Phytoplankton des SĂĽsswassers. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Hynes HBN (1963) Imported organic matter and secondary productivity in streams. Proc XVI Int Congr Zool 4: 324–329

    Google Scholar 

  • Hynes HBN (1970) The ecology of running waters. University of Toronto Press, Toronto Ingold CT (1942) Aquatic hyphomycetes of decaying alder leaves. Trans Br Mycol Soc 25: 339–417

    Google Scholar 

  • Ingold CT (1953) Dispersal in fungi. Clarendon Press, Oxford

    Google Scholar 

  • Ingold CT (1975) An illustrated guide to aquatic and waterborne hyphomycetes ( Fungi Imperfecti) with notes on their biology. Freshwater Biol Assoc Sci Publ No 30

    Google Scholar 

  • Iqbal SH (1976) Effect of pH on sporulation of freshwater hyphomycetes. Biologia (Lahore) 22: 143–153

    Google Scholar 

  • Iqbal SH, Webster J (1969) Pathogenicity of aquatic isolates of Centrospora acerina to carrots and parsnips. Trans Br Mycol Soc 53: 486–490

    Google Scholar 

  • Iqbal SH, Webster J (1973a) The trapping of aquatic hyphomycete spores by air bubbles. Trans Br Mycol Soc 60: 37–48

    Google Scholar 

  • Iqbal SH, Webster J (1973b) Aquatic hyphomycete spora of the River Exe and its tributaries. Trans Br Mycol Soc 61: 331–346

    Google Scholar 

  • Iqbal SH, Bhatty SF, Malik KS (1980) Freshwater hyphomycetes on submerged decaying pine needles in Pakistan. Trans Mycol Soc Jpn 21: 321–327

    Google Scholar 

  • Iversen TM (1973) Decomposition of autumn-shed beech leaves in a spring-brook and its significance for the fauna. Arch Hydrobiol 73: 305–312

    Google Scholar 

  • Jones EBG (1981) Observations on the ecology of lignicolous aquatic hyphomycetes. In: Wicklow DT, Carroll GC (eds) The fungal community. Marcel Dekker, New York, pp 731–742

    Google Scholar 

  • Jones EBG, Oliver AC (1964) Occurrence of aquatic hyphomycetes on wood submerged in fresh and brackish water. Trans Br Mycol Soc 47: 45–48

    Google Scholar 

  • Jones EBG, Sloof W (1965) Candida aquatica sp nov isolated from water scums. Antonie Leeuwenhoek J Microbiol Serol 32:223–228

    Google Scholar 

  • Karling JS (1935) Tetracladium marchalianum and its relation to Asterothrix, Phycastrum,and Cerasterias. Mycologia 27:478–495

    Google Scholar 

  • Kaushik NK, Hynes HBN (1971) The fate of the dead leaves that fall into streams. Arch Hydrobiol 68: 465–515

    Google Scholar 

  • Kegel W (1906) Varicosporium elodeae,ein Wasserpilz mit auffallender Konidienbildung. Ber Dtsch Bot Ges 68:465–515

    Google Scholar 

  • Kirby JMH (1984) Microbial aspects of aquatic macrophyte decomposition. Thesis, University of Exeter, Exeter

    Google Scholar 

  • Kirby JJH, Webster J, Baker JH (1990) A particle plating method for analysis of fungal community composition and structure. Mycol Res 94: 621–626

    Google Scholar 

  • Klotter HE (1955) Uber Wasserpilze (mit besonderer BerĂĽcksichtigung von Lemonniera aquatica). Mikrokosmos 44: 125–128

    Google Scholar 

  • Kobayasi Y, Hiratsuka N, Korf RP, Tubaki K, Aoshima K, Soneda M, Sugiyama J (1967) Mycological studies of the Alaskan Arctic. Annu Rep Inst Ferment Osaka 3:1–138

    Google Scholar 

  • Kobayasi Y, Hiratsuka N, Otani Y, Tubaki K Udagawa S-I, Sugiyama J, Konno K (1971) Mycological studies of the Angmagssalik region of Greenland. Bull Natl Sci Mus (Tokyo) 14:1–96

    Google Scholar 

  • Koske RE, Duncan IW (1974) Temperature effects on growth, sporulation and germination of some “aquatic” hyphomycetes. Can J Bot 52: 1387–1391

    Google Scholar 

  • Leightley LE, Eaton RA (1977) Mechanism of decay of timber by aquatic microorganisms. Brit Wood Pres Assoc, Annu Cony, pp 1–26

    Google Scholar 

  • Lindsey BI, Glover BJ (1976) Ecological studies of spores of aquatic hyphomycetes in the Cringle Brook, Lincs. Hydrobiologia 51: 201–208

    Google Scholar 

  • Lowe CW (1927) Cerasterias,the child of sorrow of the algologist. Trans R Soc Can III, 21:C111

    Google Scholar 

  • Marvanovâ L, Suberkropp K (1990) Camptobasidium hydrophilum and its anamorph, Crucella subtilis: a new heterobasidiomycete from streams. Mycologia 82:208–217

    Google Scholar 

  • Michaelides J, Kendrick B (1978) An investigation of factors retarding colonization of conifer needles by amphibious hyphomycetes in streams. Mycologia 70: 419–430

    Google Scholar 

  • MĂĽller-Haeckel A, Marvanovâ L (1976) Konidienproduktion and -kolonisation von SĂĽsswasser-Hyphomyzeten im Kaltisjokk ( Lappland ). Bot Not 129: 405–409

    Google Scholar 

  • MĂĽller-Haeckel A, Marvanovâ L (1979) Periodicity of aquatic hyphomycetes in the subarctic. Trans Br Mycol Soc 73: 109–116

    Google Scholar 

  • Neergard P, Newhall AG (1951) Notes on the physiology and pathogenicity of Centrospora acerina ( Hartig) Newhall. Phytopathology 41: 1021–1033

    Google Scholar 

  • Newton JA (1971) A mycological study of decay in the leaves of deciduous tress on the bed of a river. Thesis, University of Salford, England

    Google Scholar 

  • Nilsson S (1964) Freshwater hyphomycetes: taxonomy, morphology and ecology. Symb Bot Ups 18: 1–130

    Google Scholar 

  • Nolan RA (1977) Physiological studies with the aquatic hyphomycete Pleuropedium tricladioides isolated from the freshwater nematode Neomesomermis flumenalis. Mycologia 69: 914–926

    CAS  Google Scholar 

  • Petersen RH (1962) Aquatic hyphomycetes from North America. I Aleuriosporae (Part 1), and key to the genera. Mycologia 54: 117–151

    Google Scholar 

  • Petersen RH (1963a) Aquatic hyphomycetes from North America. II Aleuriosporae (Part 2) and Blastosporae. Mycologia 55: 18–29

    Google Scholar 

  • Petersen RH (1963b) Aquatic hyphomycetes from North America. III Phialosporae and miscellaneous species. Mycologia 55: 570–581

    Google Scholar 

  • Price IP, Talbot PHB (1966) An aquatic hyphomycete in a lignicolous habitat. Aust J Bot 14: 19–23

    Google Scholar 

  • Ranzoni FV (1953) The aquatic hyphomycetes of California. Farlowia 4: 353–398

    Google Scholar 

  • Ranzoni FV (1956) The perfect stage of Flagellospora penicillioides. Am J Bot 43: 13–17

    Google Scholar 

  • Read SJ (1990) Spore attachment in fungi with special reference to freshwater hyphomycetes. Thesis, Portsmouth Polytechnic, Portsmouth

    Google Scholar 

  • Roldan A, Descals E, Honrubia M (1989) Pure culture studies on Tetracladium. Mycol Res 93: 452–465

    Google Scholar 

  • Rosset J, Bärlocher F, Oertil JJ (1982) Decomposition of conifer needles and deciduous leaves in two Black Forest and two Swiss Jura streams. Int Rev Gesages Hydrobiol 67: 695–711

    CAS  Google Scholar 

  • Rostrop E (1894) Mykologiske Meddelelser IV. Bot Tidsskr 19: 36–47

    Google Scholar 

  • Saccardo PA (1880) Conspectus generum fungorum ltaliae inferorium. Michelia 2: 1–38

    Google Scholar 

  • Sanders PF, Webster J (1980) Sporulation responses of some “aquatic hyphomycetes” in flowing water. Trans Br Mycol Soc 74: 601–605

    Google Scholar 

  • Sati SC, Mer GS, Tiwari N (1989) Occurrence of water-borne conidial fungi on Pinus roxburghii needles. Curr Sci 58: 918

    Google Scholar 

  • Scourfield DJ (1940) The microscopic life of the “leaf carpet” of woods and forests. Essex Nat 26: 231–246

    Google Scholar 

  • Singh N, Musa TM (1977) Terrestrial occurrence and the effect of temperature on growth, sporulation and spore germination of some tropical aquatic hyphomycetes. Trans Br Mycol Soc 68:103–106

    Google Scholar 

  • Sridhar KR, Kaveriappa KM (1987) Culturing water-borne hyphomycetes on plant latex. J Ind Bot Soc 66: 232–233

    Google Scholar 

  • Suberkropp K (1984) Effect of temperature on seasonal occurrence of aquatic hyphomycetes. Trans Br Mycol Soc 82: 53–62

    Google Scholar 

  • Suberkropp K (1991a) Relationships between growth and sporulation of aquatic hyphomycetes on decomposing leaf litter. Mycol Res 95: 843–850

    Google Scholar 

  • Suberkropp K (1991b) Aquatic hyphomycete communities. In: Carroll GC, Wicklow DT (eds) The fungal community. Marcel Dekker, New York (in press)

    Google Scholar 

  • Suberkropp K, Klug MJ (1980) The maceration of deciduous leaf litter by aquatic hyphomycetes. Can J Bot 58: 1025–1031

    CAS  Google Scholar 

  • Suberkropp K, Klug MJ (1981) Degradation of leaf litter by aquatic hyphomycetes. In: Wicklow DT, Carroll GC (eds) The fungal community. Marcel Dekker, New York pp 761–776

    Google Scholar 

  • Suberkropp K, Godshalk GL, Klug MJ (1976) Changes in the chemical composition of leaves during processing in a woodland stream. Ecology 57: 720–727

    CAS  Google Scholar 

  • Suberkropp K, Arsuffi TL, Anderson JP (1983) Comparison of degradative ability, enzymatic activity and palatability of aquatic hyphomycetes grown on leaf litter. Appl Environ Microbiol 46: 237–244

    PubMed  CAS  Google Scholar 

  • Summerbell R, Cannings RA (1981) Fungi and Brillia retifinis ( Diptera: Chironomidae) in the decomposition of conifer leaves in a British Columbia stream. Syesis 14: 125–130

    Google Scholar 

  • Suzuki S, Nimura N (1961) Relation between the distribution of aquatic Hyphomycetes in Japanese lake types. Bot Mag Tokyo 74: 51–55

    Google Scholar 

  • Thornton DR (1963) The physiology and nutrition of some aquatic hyphomycetes. J Gen Microbiol 33: 23–31

    PubMed  CAS  Google Scholar 

  • Thornton DR (1965) Amino acid analysis of fresh leaf litter and the nitrogen nutrition of some aquatic hyphomycetes. Can J Microbiol 11: 657–662

    PubMed  CAS  Google Scholar 

  • Triska FJ (1970) Seasonal distribution of aquatic hyphomycetes in relation to the disappearance of leaf litter from a woodland stream. Thesis, University of Pittsburgh, Pittsburgh

    Google Scholar 

  • Tubaki K (1957) Studies on the Japanese hyphomycetes III Aquatic group. Bull Natl Sci Mus (Tokyo) 41: 249–268

    Google Scholar 

  • Tubaki K, Tokumasu S, Ando K (1985) Morning dew and Tripospermum ( Hyphomycetes ). Bot J Linn Soc 91: 45–50

    Google Scholar 

  • Waid JS (1954) Occurrence of aquatic hyphomycetes upon the root surfaces of beech grown in woodland soils. Trans Br Mycol Soc 37: 420–421

    Google Scholar 

  • Wall CJ, Lewis BG (1980) Infection of carrot plants by Mycocentrospora acerina. Trans Br Mycol Soc 74: 587–593

    Google Scholar 

  • Wallace JB, Merritt RW (1980) Filter-feeding ecology of aquatic insects. Ann Rev Entomol 25: 103–132

    Google Scholar 

  • Watanabe T (1975) Tetracladium setigerum,an aquatic hyphomycete associated with gentian and strawberry roots. Trans Mycol Soc Jpn 16:348–350

    Google Scholar 

  • Webster J (1959) Experiments with spores of aquatic hyphomycetes. I Sedimentation, and impaction on smooth surfaces. Ann Bot 23: 595–611

    Google Scholar 

  • Webster J (1975) Further studies of sporulation of aquatic hyphomycetes in relation to aeration. Trans Br Mycol Soc 64: 119–127

    Google Scholar 

  • Webster J (1987) Convergent evolution and the functional significance of spore shape in aquatic and semi-aquatic fungi. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 191–201

    Google Scholar 

  • Webster J, Davey RA (1975) Sedimentation rates and trapping efficiency of cells of Candida aquatica. Trans Br Mycol Soc 64: 437–440

    Google Scholar 

  • Webster J, Davey RA (1984) Sigmoid conidial shape in aquatic fungi. Trans Br Mycol Soc 83: 43–52

    Google Scholar 

  • Webster J, Descals E (1981) Morphology, distribution and ecology of conidial fungi in freshwater habitats. In: Cole GT, Kendrick B (eds) Biology of Conidial Fungi, vol 1. Acad Press, New York, pp 295–355

    Google Scholar 

  • Webster J, Towfik FH (1972) Sporulation of aquatic hyphomycetes in relation to aeration. Trans Br Mycol Soc 59: 353–364

    Google Scholar 

  • Webster J, Moran ST, Davey RA (1976) Growth and sporulation of Tricladium chaetocladium and Lunulospora curvula in relation to temperature. Trans Br Mycol Soc 67: 491–549

    Google Scholar 

  • Zemek J, Marvanovâ L, Kuniak L, Kadlecikova B (1985) Hydrolytic enzymes in aquatic hyphomycetes. Folia Microbiol (Prague) 30: 363–372

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bärlocher, F. (1992). Research on Aquatic Hyphomycetes: Historical Background and Overview. In: Bärlocher, F. (eds) The Ecology of Aquatic Hyphomycetes. Ecological Studies, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76855-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76855-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76857-6

  • Online ISBN: 978-3-642-76855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics