Skip to main content

Parallels Between Renal Transplant Arteriopathy and Atherosclerosis in Respect of Functional Morphology

  • Chapter
Recent Progress in Atherosclerosis Research

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 87))

  • 33 Accesses

Abstract

Despite greater standardization of surgical technique and considerable progress in the postoperative management of patients who have undergone allogeneic organ transplantation, we are increasingly faced with the problem of obliterative transplant arteriopathy, particularly after kidney transplantation. In addition to interstitial and glomerular reactions within the transplant, vascular, i.e. predominantly arterial, lesions present intriguing problems to the pathologist. Many facets of the pathogenesis of renal transplant arteriopathy (RTA) are still unexplained. Judging by macroscopic and histologic analysis of the cellular pattern, the morphology of transplanted vessels shows considerable similarities with the morphogenesis of atherosclerosis (Zollinger et al. 1978; Cerilli et al. 1987; Müeller-Hermelink and Dämmrich 1989; Roessner et al. 1989; Vollmer et al. 1991b).

This chapter is dedicated to Prof. Dr. J. Oepen, Marburg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpers CE, Gordon D, Gown AM (1990) Immunophenotype of vascular rejection in renal transplants. Mod Pathol 3:198–203

    PubMed  CAS  Google Scholar 

  • Baba N, Bashe WJ, Jordan B, Liuzzi F (1977) Human coronary atheromatous plaques. Am J Pathol 86:50a

    Google Scholar 

  • Campbell GR, Campbell JH (1990) The phenotypes of smooth muscle expressed in human atheroma. Ann NY Acad Sci 598:143–158

    Article  PubMed  CAS  Google Scholar 

  • Campbell GR, Campbell JH, Ang AH, et al. (1990a) Phenotypic changes in smooth muscle cells of human atherosclerotic plaques. In: Glagov S, Newman WP III, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, New York Berlin Heidelberg, pp 69–92

    Chapter  Google Scholar 

  • Campbell JH, Kalevitch SG, Rennick RE, Campbell GR (1990b) Extracellular matrix-smooth muscle phenotype modulation by macrophages. Ann NY Acad Sci 598:159–168

    Article  PubMed  CAS  Google Scholar 

  • Cerilli J, Brasile L, Sosa J, Kremer J, Clarke J, Leather R, Shah D (1987) The role of autoantibody to vascular endothelial cell antigens in atherosclerosis and vascular disease. Transplant Proc 19(4), Suppl 5:47–49

    Google Scholar 

  • Cordell JL, Falini B, Erber WN, et al. (1984) Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem 32:219–229

    Article  PubMed  CAS  Google Scholar 

  • Cotran RS (1987) New role for the endothelium in inflammation and immunity. Am J Pathol 129:407–413

    PubMed  CAS  Google Scholar 

  • Demetris AJ, Zerbe T, Banner B (1989) Morphology of solid organ allograft arteriopathy. Identification of proliferating intimal cell populations. Transplant Proc 21 (4):3667–3669

    PubMed  CAS  Google Scholar 

  • Duff GL, McMillan GC, Ritchie MB (1957) The morphology of early atherosclerotic lesions of the aorta demonstrated by the surface technique in rabbits fed cholesterol. Am J Pathol 33:845–873

    PubMed  CAS  Google Scholar 

  • Emeson EE, Robertson AL (1988) T-lymphocytes in aortic and coronary intimas. Am J Pathol 130:369–376

    PubMed  CAS  Google Scholar 

  • Frank ED, Warren L (1981) Aortic smooth muscle cells contain vimentin instead of desmin. J Cell Biol 78:3020–3024

    CAS  Google Scholar 

  • Franke WW, Hergt M, Grund C (1987) Rearrangement of the vimentin cytoskeleton during adipose conversion:formation of an intermediate filament cage around lipid globules. Cell 49:131–141

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Tokuyasu KT, Singer SJ (1987) Direct morphological demonstration of the coexistence of vimentin and desmin in the same intermediate filaments of vascular smooth muscle cells. J Submicrosc Cytol 19:1–9

    PubMed  CAS  Google Scholar 

  • Geer JC (1965) The fine structure of human aortic intimai thickening and fatty streaks. Lab Invest 14:1764–1783

    PubMed  CAS  Google Scholar 

  • Gerrity RG (1990) Arterial endothelial structure and permeability as it relates to susceptibility to atherogenesis. In: Glagov S, Newmann WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 13–46

    Chapter  Google Scholar 

  • Gimbrone MA, Bevilacqua MP, Cybulsky MI (1990) Endothelial-dependent mechanisms of leukocyte adhesion in inflammation and atherosclerosis. Ann NY Acad Sci 598:77–86

    Article  PubMed  Google Scholar 

  • Gordon D, Schwartz SM, Benditt EP, Wilcox JN (1989) Growth factors and cell proliferation in human atherosclerosis. Transplant Proc 21 (4):3692–3694

    PubMed  CAS  Google Scholar 

  • Hansson GK, Holm J, Jonasson L (1989a) Detection of activated T-lymphocytes in the human atherosclerotic plaque. Am J Pathol 135:169–175

    PubMed  CAS  Google Scholar 

  • Hansson GK, Jonasson L, Seifert PS, Stemme S (1989b) Immune mechanisms in atherosclerosis. Arteriosclerosis 9:567–578

    Article  PubMed  CAS  Google Scholar 

  • Hort W, Bürrig KF (1989) Endothel and Arteriosklerose. Z Kardiol 78 [Suppl 6]:105–112

    PubMed  Google Scholar 

  • Hruban RH, Beschorner WE, Baumgartner WA, Augustine SM, Ren H, Reitz BA, Hutchins GM (1990) Accelerated arteriosclerosis in heart transplant recipients is associated with a T-lymphocytemediated endothelialitis. Am J Pathol 137:871–882

    PubMed  CAS  Google Scholar 

  • Humbel B, Schwarz H (1989) Freeze substitution for immuno-chemistry. In: Verkleij AJ, Leunissen JLM (eds) Immuno-gold labeling in cell biology. CRC, Boca Raton, Fla., pp 115–134

    Google Scholar 

  • Jellinek H, Detre Z (1986) Role of the altered transmural permeability in the pathomechanism of arteriosclerosis. Pathol Res Pract 181:693–712

    Article  PubMed  CAS  Google Scholar 

  • Jonasson L, Holm J, Skalli O, Gabbiani G, Hansson GK (1985) Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest 76:125–131

    Article  PubMed  CAS  Google Scholar 

  • Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T-cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6:131–138

    Article  PubMed  CAS  Google Scholar 

  • Joris I, Majno G (1979) Inflammatory components of atherosclerosis. Adv Inflammation Res 1:71–85

    Google Scholar 

  • Joris I, Stetz E, Majno G (1979) Lymphocytes and monocytes in the aortic intima. Atherosclerosis 34:221–231

    Article  PubMed  CAS  Google Scholar 

  • Joris I, Zand T, Nunnary JJ, Krolikowski FJ, Majno G (1983) Studies of the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 113:341–358

    PubMed  CAS  Google Scholar 

  • Klurfeld DM (1983) Interactions of immune function with lipids and atherosclerosis. CRC Crit Rev Toxicol 11:355–365

    Article  Google Scholar 

  • Koch AE, Haines GK, Rizzo RJ, Radosevich JA, Pope RM, Robinson PG, Pearce WH (1990) Human abdominal aortic aneurysms. Immunopathologic analysis suggesting an immune-mediated response. Am J Pathol 137:1199–1213

    PubMed  CAS  Google Scholar 

  • Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283:249–255

    Article  PubMed  CAS  Google Scholar 

  • Libby P, Salomon RN, Payne DD, Schoen FJ, Pober JS (1989) Functions of vascular wall cells related to development of transplantation-associated coronary arteriosclerosis. Transplant Proc 21:3677–3684

    PubMed  CAS  Google Scholar 

  • Massmann J (1979) Mononuclear cell infiltration of the aortic intima in domestic swine. Exp Pathol 17:110–112

    CAS  Google Scholar 

  • Masuda J, Ross R (1990a) Atherogenesis during low level hypercholesterolemia in the nonhuman primate. I. Fatty streak formation. Arteriosclerosis 10:164–177

    Article  PubMed  CAS  Google Scholar 

  • Masuda J, Ross R (1990b) Atherogenesis during low level hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 10:178–187

    Article  PubMed  CAS  Google Scholar 

  • McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Mitchinson MJ, Carpenter KLH, Ball RY (1990) The role of macrophages in human atherosclerosis. In: Glagov S, Newman WP, Schaffer AS (eds) Pathobiology of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 121–128

    Chapter  Google Scholar 

  • Müller-Hermelink HK, Dämmrich JR (1989) Die obliterative Transplantatvaskulopathie:Pathogenese and Pathomechanismen. Verh Dtsch Ges Pathol 73:193–206

    PubMed  Google Scholar 

  • Munro JM, Cotran (1988) Biology of disease. The pathogenesis of atherosclerosis, atherogenesis and inflammation. Lab Invest 58:249–261

    PubMed  CAS  Google Scholar 

  • Munro JM, van der Walt JD, Munro CS Chalmers JHC, Cox EL (1987) An immunohistochemical analysis of human aortic fatty streak. Hum Pathol 18:375–380

    Article  PubMed  CAS  Google Scholar 

  • Pritchard KA Jr, Wong PYK, Stemerman MB (1990) Atherogenic concentrations of low-density lipoprotein enhance endothelial cell generation of epoxyeicosatrienoic acid products. Am J Pathol 136:1383–1391

    PubMed  CAS  Google Scholar 

  • Radzun HJ (1988) Differenzierungslinien im Monozyten/Makrophagensystem. Verh Dtsch Ges Pathol 72:50–56

    PubMed  CAS  Google Scholar 

  • Reidy MA, Silver M (1985) Endothelial regeneration. VII. Lack of intimal proliferation after defined injury to rat aorta. Am J Pathol 118:173–177

    PubMed  CAS  Google Scholar 

  • Roessner A, Vollmer E, Zwadlo G, Sorg C, Greve H, Grundmann E (1986) Zur Differenzierung von Makrophagen and glatten Muskelzellen mit monoklonalen Antikörpern in der arteriosklerotischen Plaque der menschlichen Aorta. Verh Dtsch Ges Pathol 70:365–370

    PubMed  CAS  Google Scholar 

  • Roessner A, Herrera A, Höning AJ, et al. (1987) Identification of macrophages and smooth muscle cells with monoclonal antibodies in the human atherosclerotic plaque. Virchows Arch [A] 412:169–174

    Article  CAS  Google Scholar 

  • Roessner A, Bögeholz J, Bosse A, Vollmer E, Buchholz E, Winde G, Bründermann H (1989) Immunhistologische Differenzierung der Zellen in der Arterienwand von Transplantatnieren. Verh Dtsch Ges Pathol 73:242–247

    PubMed  CAS  Google Scholar 

  • Rosenfeld ME, Ross R (1990) Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 10:680–687

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld ME, Palinski W, Ylä-Herttuala S, Butler S, Witzum JL (1990) Distribution of oxidation-specific lipoprotein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 10:336–349

    Article  PubMed  CAS  Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis—an update. N Engl J Med 314:488–500

    Article  PubMed  CAS  Google Scholar 

  • Ross R (1990) Mechanisms of atherosclerosis—a review. Adv Nephrol 19:79–86

    CAS  Google Scholar 

  • Salomon RN, Hughes CGW, Schoen FJ, Payne DD, Pober JS, Libby P (1991) Human coronary transplantation-associated arteriosclerosis. Am J Pathol 138:791–798

    PubMed  CAS  Google Scholar 

  • Scharf RE, Harker LA (1987) Thrombosis and atherosclerosis:Regulatory role of interactions among blood components and endothelium. Blut 55:131–144

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Meinardus-Hager G, Sorg C (1989) Das Endothel and seine Schlüsselrolle in der Entzündung. Jahrb Dermatologie 41–52

    Google Scholar 

  • Schwartz CJ, Sprague EA, Kelley JL, Valente AJ, Suenram CA (1985) Aortic intimai monocyte recruitment in the normo-and hypercholesterolemic baboon (Papio cynocephalus). Virchows Arch [A] 405:175–191

    Article  CAS  Google Scholar 

  • Schwartz CJ, Sprague EA, Valente AJ, Kelley JL, Edwards EH, Suenram CA (1990) Inflammatory components of the human atherosclerotic plaque. In: Glagov S, Newman WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 107–120

    Chapter  Google Scholar 

  • Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M (1986) Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol 123:109–125

    PubMed  CAS  Google Scholar 

  • Sitte H, Edelmann L, Neumann K (1987) Cryofixation without pretreatment at ambient pressure. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, pp 87–113

    Google Scholar 

  • Sjöstrand FS (1990) Common sense in electron microscopy. About cryofixation, freeze-substitution, low temperature embedding, and low denaturation embedding. J Struct Biol 103:135–139

    Article  Google Scholar 

  • Stary HC (1987a) Macrophages, macrophage foam cells, and eccentric intimai thickening in the coronary arteries of young children. Atherosclerosis 64:91–108

    Article  PubMed  CAS  Google Scholar 

  • Stary HC (1987b) Evolution and progression of atherosclerosis in the coronary arteries of children and adults. In: Bates SR, Gangloff ED (eds) Atherogenesis and Aging. Springer, New York Berlin Heidelberg, pp 20–36

    Chapter  Google Scholar 

  • Still WJS, Marriott PR (1964) Comparative morphology of the early atherosclerotic lesions in man and cholesterol atherosclerosis in the rabbit—an electron microscopic study. Am J Atheroscler Res 4:373–386

    Article  CAS  Google Scholar 

  • Stratford N, Britten K, Gallagher P (1986) Inflammatory infiltrate in human coronary atherosclerosis. Atherosclerosis 59:271–276

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu KT (1984) Immuno-ultracytomicrotomy. In: Polak JM, Varndell JM (eds) Immunolabeling for electron microscopy. Elsevier, Amsterdam, pp 71–82

    Google Scholar 

  • van Furth R (1982) Current view on the mononuclear phagocyte system. Immunobiology 161:178–1185

    Article  PubMed  Google Scholar 

  • Vasile E, Simionescu M, Simionescu N (1983) Visualization of the binding endocytosis and transcytosis of low density lipoprotein in the arterial endothelium in situ. J Cell Biol 96:1677–1689

    Article  PubMed  CAS  Google Scholar 

  • Vierbuchen M (1991) Lectin receptors. In: Seifert G (ed) Cell receptors. Springer, Berlin Heidelberg New York (Current Topics in Pathology 83:271–361 )

    Google Scholar 

  • Villaschi S, Spagnoli LG (1983) Autpradiographic and ultrastructural studies on the human fibro-atheromatous plaque. Atherosclerosis 48:95–100

    Article  PubMed  CAS  Google Scholar 

  • Virella G, Lopes-Virella MF (1987) Infections and atherosclerosis. Transplant Proc 19/4, Suppl 5:26–35

    Google Scholar 

  • Vollmer E (1991) Atherosklerose and renale Transplantatarteriopathie, patho-and funktionsmorphologische Parallelen. Habilitationsschrift, Faculty of Medicine, Münster

    Google Scholar 

  • Vollmer E, Maurer T, Roessner A, Bosse A, Winde G, Böcker W (1988) Immunhistologische Untersuchungen zum Lymphozyteninfiltrat in unterschiedlichen Stadien der humanen Arteriosklerose. Verh Dtsch Ges Pathol 72:600

    Google Scholar 

  • Vollmer E, Roessner A, Bosse A, Voss B, Goerdt S, Sorg C, Böcker W (1989) Immunoelectron microscopic investigations for the phenotypical characterization of endothelial cells. In: Hauss WH, Wissler RW, Bauch Hi (eds) Modern aspects of the pathogenesis of arteriosclerosis. Westdeutscher Verlag, Düsseldorf, p 235

    Google Scholar 

  • Vollmer E, Roessner A, Bosse A, et al. (1991a) Immunohistochemical double labeling of macrophages, smooth muscle cells, and apolipoprotein E in the atherosclerotic plaque. Pathol Res Pract 187:184–188

    CAS  Google Scholar 

  • Vollmer E, Bosse A, Bögeholz J, et al. (1991b) Apolipoproteins and immunohistochemical differentiation of cells in the arterial wall of kidneys in transplant arteriopathy. Pathol Res Pract 187:957–962

    PubMed  CAS  Google Scholar 

  • Vollmer E, Shimamoto F, Krieg V, Grundmann E (1991c) Macrophages/reticulum cells in early and late phases of lymphogenous metastasis. In: Grundmann E, Vollmer E (eds) Reaction patterns of the lymph node. Springer, Berlin Heidelberg New York (Current Topics in Pathology 84/2:49–79 )

    Google Scholar 

  • Watanabe T, Hirata M, Yoshikawa Y, Nagafuchi Y, Toyoshima H, Watanabe T (1985) Role of macrophages in atherosclerosis. Lab Invest 53:80–90

    PubMed  CAS  Google Scholar 

  • Wissler RW, Vesselinovitch D, Ko L (1989) The effects of circulating immune complexes on atherosclerotic lesions in experimental animals and in younger and older humans. Transplant Proc 21 (4):3707–3708

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Mitsumata M, Yamane T, Tomikawa M, Nishida K (1988) Morphology and increased growth rate of atherosclerotic intimai smooth muscle cells. Arch Pathol Lab Med 112:987–996

    PubMed  CAS  Google Scholar 

  • Yost JC, Herman IM (1988) Age-related and site-specific adaptation of the arterial endothelial cytoskeleton during atherogenesis. Am J Pathol 130:595–604

    PubMed  CAS  Google Scholar 

  • Zollfinger HU, Mihatsch MJ, Thiel G, Harder F, Heitz P, Uebersax S, Gudat F (1978) Renal pathology in biopsy. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zwadlo G, Bröcker EB, von Bassewitz DB, Feige U, Sorg C (1985) A monoclonal antibody to a differentiation antigen present on mature human macrophages and absent from monocytes. J Immunol 134:1487–1492

    PubMed  CAS  Google Scholar 

  • Zwadlo G, Schlegel R, Sorg C (1986) A monoclonal antibody to a subset of human monocytes found only in the peripheral blood and inflammatory tissues. J Immunol 137:512–518

    PubMed  CAS  Google Scholar 

  • Zwadlo G, Brüggen J, Gerhards G, Schlegel R, Sorg C (1988) Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues. Clin Exp Immunol 72:510–515

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vollmer, E., Roessner, A. (1993). Parallels Between Renal Transplant Arteriopathy and Atherosclerosis in Respect of Functional Morphology. In: Roessner, A., Vollmer, E. (eds) Recent Progress in Atherosclerosis Research. Current Topics in Pathology, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76849-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76849-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76851-4

  • Online ISBN: 978-3-642-76849-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics