Advertisement

Parallels Between Renal Transplant Arteriopathy and Atherosclerosis in Respect of Functional Morphology

Chapter
  • 25 Downloads
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 87)

Abstract

Despite greater standardization of surgical technique and considerable progress in the postoperative management of patients who have undergone allogeneic organ transplantation, we are increasingly faced with the problem of obliterative transplant arteriopathy, particularly after kidney transplantation. In addition to interstitial and glomerular reactions within the transplant, vascular, i.e. predominantly arterial, lesions present intriguing problems to the pathologist. Many facets of the pathogenesis of renal transplant arteriopathy (RTA) are still unexplained. Judging by macroscopic and histologic analysis of the cellular pattern, the morphology of transplanted vessels shows considerable similarities with the morphogenesis of atherosclerosis (Zollinger et al. 1978; Cerilli et al. 1987; Müeller-Hermelink and Dämmrich 1989; Roessner et al. 1989; Vollmer et al. 1991b).

Keywords

Smooth Muscle Cell Renal Transplant Vascular Wall Foam Cell Human Atherosclerotic Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpers CE, Gordon D, Gown AM (1990) Immunophenotype of vascular rejection in renal transplants. Mod Pathol 3:198–203PubMedGoogle Scholar
  2. Baba N, Bashe WJ, Jordan B, Liuzzi F (1977) Human coronary atheromatous plaques. Am J Pathol 86:50aGoogle Scholar
  3. Campbell GR, Campbell JH (1990) The phenotypes of smooth muscle expressed in human atheroma. Ann NY Acad Sci 598:143–158PubMedCrossRefGoogle Scholar
  4. Campbell GR, Campbell JH, Ang AH, et al. (1990a) Phenotypic changes in smooth muscle cells of human atherosclerotic plaques. In: Glagov S, Newman WP III, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, New York Berlin Heidelberg, pp 69–92CrossRefGoogle Scholar
  5. Campbell JH, Kalevitch SG, Rennick RE, Campbell GR (1990b) Extracellular matrix-smooth muscle phenotype modulation by macrophages. Ann NY Acad Sci 598:159–168PubMedCrossRefGoogle Scholar
  6. Cerilli J, Brasile L, Sosa J, Kremer J, Clarke J, Leather R, Shah D (1987) The role of autoantibody to vascular endothelial cell antigens in atherosclerosis and vascular disease. Transplant Proc 19(4), Suppl 5:47–49Google Scholar
  7. Cordell JL, Falini B, Erber WN, et al. (1984) Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem 32:219–229PubMedCrossRefGoogle Scholar
  8. Cotran RS (1987) New role for the endothelium in inflammation and immunity. Am J Pathol 129:407–413PubMedGoogle Scholar
  9. Demetris AJ, Zerbe T, Banner B (1989) Morphology of solid organ allograft arteriopathy. Identification of proliferating intimal cell populations. Transplant Proc 21 (4):3667–3669PubMedGoogle Scholar
  10. Duff GL, McMillan GC, Ritchie MB (1957) The morphology of early atherosclerotic lesions of the aorta demonstrated by the surface technique in rabbits fed cholesterol. Am J Pathol 33:845–873PubMedGoogle Scholar
  11. Emeson EE, Robertson AL (1988) T-lymphocytes in aortic and coronary intimas. Am J Pathol 130:369–376PubMedGoogle Scholar
  12. Frank ED, Warren L (1981) Aortic smooth muscle cells contain vimentin instead of desmin. J Cell Biol 78:3020–3024Google Scholar
  13. Franke WW, Hergt M, Grund C (1987) Rearrangement of the vimentin cytoskeleton during adipose conversion:formation of an intermediate filament cage around lipid globules. Cell 49:131–141PubMedCrossRefGoogle Scholar
  14. Fujimoto T, Tokuyasu KT, Singer SJ (1987) Direct morphological demonstration of the coexistence of vimentin and desmin in the same intermediate filaments of vascular smooth muscle cells. J Submicrosc Cytol 19:1–9PubMedGoogle Scholar
  15. Geer JC (1965) The fine structure of human aortic intimai thickening and fatty streaks. Lab Invest 14:1764–1783PubMedGoogle Scholar
  16. Gerrity RG (1990) Arterial endothelial structure and permeability as it relates to susceptibility to atherogenesis. In: Glagov S, Newmann WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 13–46CrossRefGoogle Scholar
  17. Gimbrone MA, Bevilacqua MP, Cybulsky MI (1990) Endothelial-dependent mechanisms of leukocyte adhesion in inflammation and atherosclerosis. Ann NY Acad Sci 598:77–86PubMedCrossRefGoogle Scholar
  18. Gordon D, Schwartz SM, Benditt EP, Wilcox JN (1989) Growth factors and cell proliferation in human atherosclerosis. Transplant Proc 21 (4):3692–3694PubMedGoogle Scholar
  19. Hansson GK, Holm J, Jonasson L (1989a) Detection of activated T-lymphocytes in the human atherosclerotic plaque. Am J Pathol 135:169–175PubMedGoogle Scholar
  20. Hansson GK, Jonasson L, Seifert PS, Stemme S (1989b) Immune mechanisms in atherosclerosis. Arteriosclerosis 9:567–578PubMedCrossRefGoogle Scholar
  21. Hort W, Bürrig KF (1989) Endothel and Arteriosklerose. Z Kardiol 78 [Suppl 6]:105–112PubMedGoogle Scholar
  22. Hruban RH, Beschorner WE, Baumgartner WA, Augustine SM, Ren H, Reitz BA, Hutchins GM (1990) Accelerated arteriosclerosis in heart transplant recipients is associated with a T-lymphocytemediated endothelialitis. Am J Pathol 137:871–882PubMedGoogle Scholar
  23. Humbel B, Schwarz H (1989) Freeze substitution for immuno-chemistry. In: Verkleij AJ, Leunissen JLM (eds) Immuno-gold labeling in cell biology. CRC, Boca Raton, Fla., pp 115–134Google Scholar
  24. Jellinek H, Detre Z (1986) Role of the altered transmural permeability in the pathomechanism of arteriosclerosis. Pathol Res Pract 181:693–712PubMedCrossRefGoogle Scholar
  25. Jonasson L, Holm J, Skalli O, Gabbiani G, Hansson GK (1985) Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest 76:125–131PubMedCrossRefGoogle Scholar
  26. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T-cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6:131–138PubMedCrossRefGoogle Scholar
  27. Joris I, Majno G (1979) Inflammatory components of atherosclerosis. Adv Inflammation Res 1:71–85Google Scholar
  28. Joris I, Stetz E, Majno G (1979) Lymphocytes and monocytes in the aortic intima. Atherosclerosis 34:221–231PubMedCrossRefGoogle Scholar
  29. Joris I, Zand T, Nunnary JJ, Krolikowski FJ, Majno G (1983) Studies of the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 113:341–358PubMedGoogle Scholar
  30. Klurfeld DM (1983) Interactions of immune function with lipids and atherosclerosis. CRC Crit Rev Toxicol 11:355–365CrossRefGoogle Scholar
  31. Koch AE, Haines GK, Rizzo RJ, Radosevich JA, Pope RM, Robinson PG, Pearce WH (1990) Human abdominal aortic aneurysms. Immunopathologic analysis suggesting an immune-mediated response. Am J Pathol 137:1199–1213PubMedGoogle Scholar
  32. Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283:249–255PubMedCrossRefGoogle Scholar
  33. Libby P, Salomon RN, Payne DD, Schoen FJ, Pober JS (1989) Functions of vascular wall cells related to development of transplantation-associated coronary arteriosclerosis. Transplant Proc 21:3677–3684PubMedGoogle Scholar
  34. Massmann J (1979) Mononuclear cell infiltration of the aortic intima in domestic swine. Exp Pathol 17:110–112Google Scholar
  35. Masuda J, Ross R (1990a) Atherogenesis during low level hypercholesterolemia in the nonhuman primate. I. Fatty streak formation. Arteriosclerosis 10:164–177PubMedCrossRefGoogle Scholar
  36. Masuda J, Ross R (1990b) Atherogenesis during low level hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 10:178–187PubMedCrossRefGoogle Scholar
  37. McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083PubMedCrossRefGoogle Scholar
  38. Mitchinson MJ, Carpenter KLH, Ball RY (1990) The role of macrophages in human atherosclerosis. In: Glagov S, Newman WP, Schaffer AS (eds) Pathobiology of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 121–128CrossRefGoogle Scholar
  39. Müller-Hermelink HK, Dämmrich JR (1989) Die obliterative Transplantatvaskulopathie:Pathogenese and Pathomechanismen. Verh Dtsch Ges Pathol 73:193–206PubMedGoogle Scholar
  40. Munro JM, Cotran (1988) Biology of disease. The pathogenesis of atherosclerosis, atherogenesis and inflammation. Lab Invest 58:249–261PubMedGoogle Scholar
  41. Munro JM, van der Walt JD, Munro CS Chalmers JHC, Cox EL (1987) An immunohistochemical analysis of human aortic fatty streak. Hum Pathol 18:375–380PubMedCrossRefGoogle Scholar
  42. Pritchard KA Jr, Wong PYK, Stemerman MB (1990) Atherogenic concentrations of low-density lipoprotein enhance endothelial cell generation of epoxyeicosatrienoic acid products. Am J Pathol 136:1383–1391PubMedGoogle Scholar
  43. Radzun HJ (1988) Differenzierungslinien im Monozyten/Makrophagensystem. Verh Dtsch Ges Pathol 72:50–56PubMedGoogle Scholar
  44. Reidy MA, Silver M (1985) Endothelial regeneration. VII. Lack of intimal proliferation after defined injury to rat aorta. Am J Pathol 118:173–177PubMedGoogle Scholar
  45. Roessner A, Vollmer E, Zwadlo G, Sorg C, Greve H, Grundmann E (1986) Zur Differenzierung von Makrophagen and glatten Muskelzellen mit monoklonalen Antikörpern in der arteriosklerotischen Plaque der menschlichen Aorta. Verh Dtsch Ges Pathol 70:365–370PubMedGoogle Scholar
  46. Roessner A, Herrera A, Höning AJ, et al. (1987) Identification of macrophages and smooth muscle cells with monoclonal antibodies in the human atherosclerotic plaque. Virchows Arch [A] 412:169–174CrossRefGoogle Scholar
  47. Roessner A, Bögeholz J, Bosse A, Vollmer E, Buchholz E, Winde G, Bründermann H (1989) Immunhistologische Differenzierung der Zellen in der Arterienwand von Transplantatnieren. Verh Dtsch Ges Pathol 73:242–247PubMedGoogle Scholar
  48. Rosenfeld ME, Ross R (1990) Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 10:680–687PubMedCrossRefGoogle Scholar
  49. Rosenfeld ME, Palinski W, Ylä-Herttuala S, Butler S, Witzum JL (1990) Distribution of oxidation-specific lipoprotein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 10:336–349PubMedCrossRefGoogle Scholar
  50. Ross R (1986) The pathogenesis of atherosclerosis—an update. N Engl J Med 314:488–500PubMedCrossRefGoogle Scholar
  51. Ross R (1990) Mechanisms of atherosclerosis—a review. Adv Nephrol 19:79–86Google Scholar
  52. Salomon RN, Hughes CGW, Schoen FJ, Payne DD, Pober JS, Libby P (1991) Human coronary transplantation-associated arteriosclerosis. Am J Pathol 138:791–798PubMedGoogle Scholar
  53. Scharf RE, Harker LA (1987) Thrombosis and atherosclerosis:Regulatory role of interactions among blood components and endothelium. Blut 55:131–144PubMedCrossRefGoogle Scholar
  54. Schulze-Osthoff K, Meinardus-Hager G, Sorg C (1989) Das Endothel and seine Schlüsselrolle in der Entzündung. Jahrb Dermatologie 41–52Google Scholar
  55. Schwartz CJ, Sprague EA, Kelley JL, Valente AJ, Suenram CA (1985) Aortic intimai monocyte recruitment in the normo-and hypercholesterolemic baboon (Papio cynocephalus). Virchows Arch [A] 405:175–191CrossRefGoogle Scholar
  56. Schwartz CJ, Sprague EA, Valente AJ, Kelley JL, Edwards EH, Suenram CA (1990) Inflammatory components of the human atherosclerotic plaque. In: Glagov S, Newman WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 107–120CrossRefGoogle Scholar
  57. Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M (1986) Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol 123:109–125PubMedGoogle Scholar
  58. Sitte H, Edelmann L, Neumann K (1987) Cryofixation without pretreatment at ambient pressure. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, pp 87–113Google Scholar
  59. Sjöstrand FS (1990) Common sense in electron microscopy. About cryofixation, freeze-substitution, low temperature embedding, and low denaturation embedding. J Struct Biol 103:135–139CrossRefGoogle Scholar
  60. Stary HC (1987a) Macrophages, macrophage foam cells, and eccentric intimai thickening in the coronary arteries of young children. Atherosclerosis 64:91–108PubMedCrossRefGoogle Scholar
  61. Stary HC (1987b) Evolution and progression of atherosclerosis in the coronary arteries of children and adults. In: Bates SR, Gangloff ED (eds) Atherogenesis and Aging. Springer, New York Berlin Heidelberg, pp 20–36CrossRefGoogle Scholar
  62. Still WJS, Marriott PR (1964) Comparative morphology of the early atherosclerotic lesions in man and cholesterol atherosclerosis in the rabbit—an electron microscopic study. Am J Atheroscler Res 4:373–386CrossRefGoogle Scholar
  63. Stratford N, Britten K, Gallagher P (1986) Inflammatory infiltrate in human coronary atherosclerosis. Atherosclerosis 59:271–276PubMedCrossRefGoogle Scholar
  64. Tokuyasu KT (1984) Immuno-ultracytomicrotomy. In: Polak JM, Varndell JM (eds) Immunolabeling for electron microscopy. Elsevier, Amsterdam, pp 71–82Google Scholar
  65. van Furth R (1982) Current view on the mononuclear phagocyte system. Immunobiology 161:178–1185PubMedCrossRefGoogle Scholar
  66. Vasile E, Simionescu M, Simionescu N (1983) Visualization of the binding endocytosis and transcytosis of low density lipoprotein in the arterial endothelium in situ. J Cell Biol 96:1677–1689PubMedCrossRefGoogle Scholar
  67. Vierbuchen M (1991) Lectin receptors. In: Seifert G (ed) Cell receptors. Springer, Berlin Heidelberg New York (Current Topics in Pathology 83:271–361 )Google Scholar
  68. Villaschi S, Spagnoli LG (1983) Autpradiographic and ultrastructural studies on the human fibro-atheromatous plaque. Atherosclerosis 48:95–100PubMedCrossRefGoogle Scholar
  69. Virella G, Lopes-Virella MF (1987) Infections and atherosclerosis. Transplant Proc 19/4, Suppl 5:26–35Google Scholar
  70. Vollmer E (1991) Atherosklerose and renale Transplantatarteriopathie, patho-and funktionsmorphologische Parallelen. Habilitationsschrift, Faculty of Medicine, MünsterGoogle Scholar
  71. Vollmer E, Maurer T, Roessner A, Bosse A, Winde G, Böcker W (1988) Immunhistologische Untersuchungen zum Lymphozyteninfiltrat in unterschiedlichen Stadien der humanen Arteriosklerose. Verh Dtsch Ges Pathol 72:600Google Scholar
  72. Vollmer E, Roessner A, Bosse A, Voss B, Goerdt S, Sorg C, Böcker W (1989) Immunoelectron microscopic investigations for the phenotypical characterization of endothelial cells. In: Hauss WH, Wissler RW, Bauch Hi (eds) Modern aspects of the pathogenesis of arteriosclerosis. Westdeutscher Verlag, Düsseldorf, p 235Google Scholar
  73. Vollmer E, Roessner A, Bosse A, et al. (1991a) Immunohistochemical double labeling of macrophages, smooth muscle cells, and apolipoprotein E in the atherosclerotic plaque. Pathol Res Pract 187:184–188Google Scholar
  74. Vollmer E, Bosse A, Bögeholz J, et al. (1991b) Apolipoproteins and immunohistochemical differentiation of cells in the arterial wall of kidneys in transplant arteriopathy. Pathol Res Pract 187:957–962PubMedGoogle Scholar
  75. Vollmer E, Shimamoto F, Krieg V, Grundmann E (1991c) Macrophages/reticulum cells in early and late phases of lymphogenous metastasis. In: Grundmann E, Vollmer E (eds) Reaction patterns of the lymph node. Springer, Berlin Heidelberg New York (Current Topics in Pathology 84/2:49–79 )Google Scholar
  76. Watanabe T, Hirata M, Yoshikawa Y, Nagafuchi Y, Toyoshima H, Watanabe T (1985) Role of macrophages in atherosclerosis. Lab Invest 53:80–90PubMedGoogle Scholar
  77. Wissler RW, Vesselinovitch D, Ko L (1989) The effects of circulating immune complexes on atherosclerotic lesions in experimental animals and in younger and older humans. Transplant Proc 21 (4):3707–3708PubMedGoogle Scholar
  78. Yoshida Y, Mitsumata M, Yamane T, Tomikawa M, Nishida K (1988) Morphology and increased growth rate of atherosclerotic intimai smooth muscle cells. Arch Pathol Lab Med 112:987–996PubMedGoogle Scholar
  79. Yost JC, Herman IM (1988) Age-related and site-specific adaptation of the arterial endothelial cytoskeleton during atherogenesis. Am J Pathol 130:595–604PubMedGoogle Scholar
  80. Zollfinger HU, Mihatsch MJ, Thiel G, Harder F, Heitz P, Uebersax S, Gudat F (1978) Renal pathology in biopsy. Springer, Berlin Heidelberg New YorkGoogle Scholar
  81. Zwadlo G, Bröcker EB, von Bassewitz DB, Feige U, Sorg C (1985) A monoclonal antibody to a differentiation antigen present on mature human macrophages and absent from monocytes. J Immunol 134:1487–1492PubMedGoogle Scholar
  82. Zwadlo G, Schlegel R, Sorg C (1986) A monoclonal antibody to a subset of human monocytes found only in the peripheral blood and inflammatory tissues. J Immunol 137:512–518PubMedGoogle Scholar
  83. Zwadlo G, Brüggen J, Gerhards G, Schlegel R, Sorg C (1988) Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues. Clin Exp Immunol 72:510–515PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations