Skip to main content

Metabolism of Fibromuscular and Atheromatous Plaques in an Experimental Model: Causal Mechanisms for the Development of Intimal Necrosis

  • Chapter
Book cover Recent Progress in Atherosclerosis Research

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 87))

Abstract

Hallmarks in the development of atherosclerosis are intimal accumulation of leukocytes, especially monocytes/macrophages, proliferation of cells characterized as modified smooth muscle cells, formation of extracellular matrix, and incorporation of lipids either within intimal cells or associated with extracellular material (for reviews see: Hauss 1973; Geer and Webster 1974; Ross and Glomset 1976; Camejo 1982; Gotlieb 1982; Klurfeld 1983; Thomas and Kim 1983; Ross 1986; Munro and Cotran 1988; Stary 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams CWM (1967) Vascular histochemistry in relation to the chemical and structural pathology of cardiovascular disease. Lloyd-Luke, London

    Google Scholar 

  • Apfel H, Betz E (1985) Der elektrische Widerstand von Arterienwänden bei Atheromentwicklung. Angio Arch 7:91–93

    Google Scholar 

  • Arnqvist HJ, Lundholm L (1976) Influence of oxygen tension on the metabolism of vascular smooth muscle:demonstration of a Pasteur effect. Atherosclerosis 25:245–252

    PubMed  CAS  Google Scholar 

  • Avogaro P, Bittolo Bon G, Cazzolato G (1988) Presence of a modified low density lipoprotein in humans. Arteriosclerosis 8:79–87

    PubMed  CAS  Google Scholar 

  • Badwey JA, Karnowsky M (1980) Active oxygen species and the function of phagocytotic leukocytes. Annu Rev Biochem 49:695–726

    PubMed  CAS  Google Scholar 

  • Bayliss High OB, Adams CWM (1980) The role of macrophages and giant cells in advanced human atherosclerosis. Atherosclerosis 36:441–447

    Google Scholar 

  • Bergmeyer HU (ed) (1974) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 2178–2182

    Google Scholar 

  • Betz E (1991) Animal models and cultures of vessel wall cells in atherosclerosis research. Z Kardiol 80 [Suppl] 917–13

    Google Scholar 

  • Betz E Hämmerle H (1984) The action of antiatherogenic drugs on the development of atheroma and on cultures of smooth muscle cells and fibroblasts. Funkt Biol Med 3:46–55

    CAS  Google Scholar 

  • Betz E, Schlote W (1979) Responses of vessel walls to chronically applied electrical stimuli. Basic Res Cardiol 74:10–20

    PubMed  CAS  Google Scholar 

  • Betz E, Wiegel W (1982) Smooth muscle hypersensitivity to norepinephrine of atheromatous proliferates in carotid arteries. In: Heisted DD, Marcus MC (eds) Cerebral blood flow. Effects of nerves and neurotransmitters. Elsevier/North-Holland, Amsterdam, pp 177–182

    Google Scholar 

  • Betz E, Roth J, Schlote W (1980) Proliferation of smooth muscle cells in long-term local stimulation of carotid arteries. Folia Angiol 28:28–31

    Google Scholar 

  • Björnheden T, Bondjers G (1987) Oxygen consumption in aortic tissue from rabbits with diet induced atherosclerosis. Arteriosclerosis 7:238–247

    PubMed  Google Scholar 

  • Bowen-Pope DF, Ross R, Seifert RA (1985) Locally acting growth factors for vascular smooth muscle cells:endogenous synthesis and release from platelets. Circulation 72:735–740

    PubMed  CAS  Google Scholar 

  • Camejo G (1982) The interactions of lipids and lipoproteins with the extracellular matrix of arterial tissue:its possible role in atherogenesis. Adv Lipid Res 19:1–53

    PubMed  CAS  Google Scholar 

  • Cliff WJ, Heathcote CR, Moss NS, Reichenbach DD (1988) The coronary arteries in cases of cardiac and noncardiac sudden death. Am J Pathol 132:319–329

    PubMed  CAS  Google Scholar 

  • Crawford DW, Blankenhorn DH (1991) Arterial wall oxygenation, oxyradicals, and atherosclerosis. Atherosclerosis 89:97–108

    PubMed  CAS  Google Scholar 

  • Davies MJ, Woolf N, Rowlews PM, Pepper J (1988) Morphology of the endothelium over atherosclerotic plaques in human coronary arteries. Br Heart J 60:459–464

    PubMed  CAS  Google Scholar 

  • Davies PF (1986) Vascular cell interactions with special reference to the pathogenesis of atherosclerosis. Lab Invest 55:5–21

    PubMed  CAS  Google Scholar 

  • Doerr W (1978) Arteriosclerosis without end. Principles of pathogenesis and an attempt at a nosologic classification. Virchows Arch [A] 380:91–106

    CAS  Google Scholar 

  • Drake TA, Hannani K, Fei HH, Lavi S, Berliner JA (1991) Minimally oxidized low density lipoprotein induces tissue factor expression in cultured human endothelial cells. Am J Pathol 138:601–607

    PubMed  CAS  Google Scholar 

  • Eitel W, Schmid G, Schlote W, Betz E (1980) Early arteriosclerotic changes of the carotid artery wall induced by electrostimulation. A study by scanning and transmission electron microscopy. Pathol Res Pract 170:211–229

    PubMed  CAS  Google Scholar 

  • Engel E, Knehr HE, Betz E (1984) Messungen des Sauerstoffverbrauchs von Arterienwandelementen. Funktionsanalyse biologischer Systeme 12:83–89

    CAS  Google Scholar 

  • Esterbauer H, Jürgens G, Quehenberger O, Koller E (1987) Autoxidation of human low density lipoprotein:loss of polyunsaturated fatty acids and vitamin E on generation of aldehydes. J Lipid Res 28:495–509

    PubMed  CAS  Google Scholar 

  • Faupel RP, Seitz HJ, Tarnowsky W, Thiemann V, Weiß CH (1972) The problem of tissue sampling from experimental animals with respect to freezing technique, anoxia, stress, and narcosis. Arch Biochem Biophys 148:509–522

    PubMed  CAS  Google Scholar 

  • Ferns GAA, Raines EW, Sprugel KH, Motani AS, Reidy MA, Ross R (1991) Inhibition of smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 253:1129–1132

    PubMed  CAS  Google Scholar 

  • Geer JC, Webster WS (1974) Morphology of mesenchymal elements of normal artery, fatty streaks and plaques. Adv Exp Med Biol 43:9–33

    PubMed  CAS  Google Scholar 

  • Glavind J, Hartmann S, Clemmesen J, Jessen KE, Dam H (1952) Studies of the role of lipoperoxides in human pathology. Acta Pathol Microbiol Scand 30:1–6

    PubMed  CAS  Google Scholar 

  • Gotlieb AJ (1982) Smooth muscle and endothelial cell function in the pathogensis of atherosclerosis. Can Med Assoc J 126:903–908

    PubMed  CAS  Google Scholar 

  • Gutstein WH, Harrison J, Parl F, Kin G, Avitable M (1978) Neuronal factors contribute to atherogenesis. Science 199:449–451

    PubMed  CAS  Google Scholar 

  • Hajjar DP, Farber IC, Smith SC (1988) Oxygen tension within the arterial wall:relationship to altered bioenergetic metabolism and lipid accumulation. Arch Biochem Biophys 262:375–380

    PubMed  CAS  Google Scholar 

  • Hansson GK, Jonasson L, Holm J, Clowes MM, Clowes AW (1988) Gamma-interferon regulates vascular smooth muscle proliferation and Ia antigen expression in vivo and in vitro. Circ Res 63:712–719

    PubMed  CAS  Google Scholar 

  • Hansson GK, Holm J, Jonasson L (1989) Detection of activated T-lymphocytes in the human atherosclerotic plaque. Am J Pathol 135:169–175

    PubMed  CAS  Google Scholar 

  • Harats D, Bennaim M, Dabach Y, Hollander G, Havivi E, Stein O, Stein Y (1990) Effects of vitamin C and vitamin E supplementation on susceptibility of plasma lipoproteins to peroxidation induced by acute smoking. Atherosclerosis 85:47–54

    CAS  Google Scholar 

  • Hauss WH (1973) Über die Rolle des Mesenchyms in der Genese der Arteriosklerose. Virchows Arch [A] 359:135–156

    CAS  Google Scholar 

  • Haust MD (1974) Light and electron microscopy of human atherosclerotic lesions. Adv Exp Med Biol 104:33–59

    Google Scholar 

  • Heinle H (1982) Peroxide induced activation of glycogen phosphorylase a activity in vascular smooth muscle. Biochem Biophys Res Commun 107:597–601

    PubMed  CAS  Google Scholar 

  • Heinle H (1984) Vasoconstriction of carotid artery induced by hydroperoxides. Arch Int Physiol Biochem 92:267–271

    CAS  Google Scholar 

  • Heinle H (1985) Stoffwechseländerungen der Gefäßwand bei experimenteller Arteriosklerose. Habilitations schrift, University of Tübingen

    Google Scholar 

  • Heinle H (1987) Metabolite concentration gradients in the arterial wall of experimental atherosclerosis. Exp Mol Pathol 46:312–320

    PubMed  CAS  Google Scholar 

  • Heinle H (1989) Influence of oxidative stress on metabolic and contractile functions of arterial smooth muscle. In: Acker H (ed) Oxygen sensing in tissues. Springer, Berlin Heidelberg New York, pp 151–164

    Google Scholar 

  • Heinle H, Liebich H (1980) The influence of diet-induced hypercholesterolemia on the degree of oxidation of glutathione in rabbit aorta Atherosclerosis 37:637–640

    PubMed  CAS  Google Scholar 

  • Heinle H, Knehr H, Schmid G, Eitel W Betz E (1980a) Biochemical variations in electrically induced intimai smooth muscle cell proliferates of the rabbit carotid artery. Artery 8:393–397

    PubMed  CAS  Google Scholar 

  • Heinle H, Tarozy M, Schmid G, Betz E (1980b) Morphological and functional alterations in the arterial wall after local electrical stimulation. Bibl Anat 20:79–82

    Google Scholar 

  • Heinle H, Stowasser F, Betz. E (1982) Metabolic changes in modified smooth muscle cells of rabbit carotid arteries. Basic Res Cardiol 77:82–92

    PubMed  CAS  Google Scholar 

  • Heinle H, Kling D, Lindner V (1987) Increased contractile responses of isolated arteriosclerotic rabbit carotid arteries to various vasoactive stimuli. Int Angiol 6:53–58

    PubMed  CAS  Google Scholar 

  • Heinle H, Tries S, Esterbauer H (1988) Effects of H2O2, arachidonic acid hydroperoxide and 4-hydroxynonenal on arterial smooth muscle contraction. Pflügers Arch 412 [Suppl]:R85

    Google Scholar 

  • Heinle H, Ableiter H, Betz E (1991a) Diet-induced hypercholesterolemia decreases osmotic resistance of rabbit erythrocytes:possible involvement of the thiol-protecting system. Nutr Metab Cardiovasc Dis 1:125–129

    CAS  Google Scholar 

  • Heinle H, Veigel C, Tries S (1991b) The influence of oxidatively modified low density lipoprotein on parameters of energy metabolism and contractile function of arterial smooth muscle. Free Radic Res Commun 11:281–286

    PubMed  CAS  Google Scholar 

  • Heughan C, Niinikoshi J, Hunt TK (1973) Oxygen tension in lesions of experimental atherosclerosis of rabbits. Atherosclerosis 17:361–367

    PubMed  CAS  Google Scholar 

  • Hort W (1985) Morphologie der koronaren Herzerkrankung. In: Schettler G, Gross R (eds) Arteriosklerose:Grundlagen, Diagnostik, Therapie. Deutscher Ärzte Verlag, Cologne, pp 35–44

    Google Scholar 

  • Hort W, Kalbfleisch H, Frenzel H (1982) Coronary atherosclerosis and its relation to myocardial infarction. Verh Dtsch Ges Inn Med 88:1298–1301

    Google Scholar 

  • Hunt JV, Wolff SP (1991) Oxidative glycation and free radical production—a causal mechanism of diabetic complication. Free Radic Res Commun 12:115–123

    PubMed  Google Scholar 

  • Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in human atherosclerotic plaque. Arteriosclerosis 6:131–138

    PubMed  CAS  Google Scholar 

  • Jurrus ER, Weiss HS (1977) In vitro oxygen tensions in the rabbit aortic arch. Atherosclerosis 28:223–232

    PubMed  CAS  Google Scholar 

  • Kirk JE (1963) Intermediary metabolism of human arterial tissue and its change with age and atherosclerosis. In: Sandler M, Bourne GH (eds) Atherosclerosis and its origin. Academic Press, New York, pp 67–117

    Google Scholar 

  • Kirsch WM, Ferguson JF, Ignelzi R (1978) Regional differences in arterial metabolic rates:its significance in relation to cerebral vasospasm. Adv Neurol 20:47–57

    PubMed  CAS  Google Scholar 

  • Kling D, Holzschuh T, Betz E (1987a) Temporal sequence of morphological alterations in artery walls during experimental atherogenesis. Occurrence of leukocytes. Res Exp Med 187:237–250

    Google Scholar 

  • Kling D, Holzschuh T, Strohschneider T, Betz E (1987b) Enhanced endothelial permeability and invasion of leukocytes into the artery wall as inital events in experimental atherosclerosis. Int Angiol 6:21–28

    PubMed  CAS  Google Scholar 

  • Kling D, Heinle H, Harlan JM (1991) Participation of leukocytes in the development of experimentally induced arteriosclerosis. Morphological and functional aspects. In: Hauss WH, Wissler RW, Bauch HJ (eds) Abhandlungen der Rhein. Westf. Akademie der Wissenschaften, Westdeutscher Verlag, pp 105–115

    Google Scholar 

  • Klurfeld DM (1983) Interactions of immune function with lipids and atherosclerosis. CRC Crit Rev Toxicol 11:333–365

    CAS  Google Scholar 

  • Knehr HE, Heinle H, Betz E (1980) Enhanced oxygen uptake and lactate production of smooth mucsle cell proliferates of rabbit carotid arteries. Pflügers Arch 387:73–77

    PubMed  CAS  Google Scholar 

  • Loeper J, Emerit J, Goy J, Bedu O, Loeper J (1983) Lipid peroxidation during human atherosclerosis. IRCS Med Sci 11:1034–1035

    CAS  Google Scholar 

  • Lowry DH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic, New York

    Google Scholar 

  • Lynch RM, Paul RJ (1983) Compartmentation of glycolytic and glycogenolytic metabolism in vascular smooth muscle. Science 222:1344–1346

    PubMed  CAS  Google Scholar 

  • Morrison AD, Berwick L, Orci L, Winegrad AI (1976) Morphology and metabolism of an aortic intima-media preparation in which an intact endothelium is preserved. J Clin Invest 57:650–660

    PubMed  CAS  Google Scholar 

  • Morrison ES, Scott RF, Kroms M, Frick J (1972) Glucose degradation in normal and atherosclerotic aortic intima-media. Atherosclerosis 16:175–184

    PubMed  CAS  Google Scholar 

  • Moss AJ, Samuelson P, Angell C, Minken SL (1968) Polarographic evaluation of transmural oxygen availability in intact muscular arteries. J Atheroscler Res 8:803–810

    PubMed  CAS  Google Scholar 

  • Mowri H, Chinen K, Ohkuma S, Takano T (1986) Peroxidized lipids isolated by HPLC from atherosclerotic aorta. Biochem Int 12:347–352

    PubMed  CAS  Google Scholar 

  • Munro MJ, Cotran RS (1988) The pathogenesis of atherogenesis:atherogenesis and inflammation. Lab Invest 58:249–261

    PubMed  CAS  Google Scholar 

  • Munro AF, Rifkind BM, Leibescheutz HJ, Campbell RSF, Howard BR (1961) Effect of cholesterol feeding on the oxygen consumption of aortic tissue from the cockerel and the rat. J Atheroscler Res 1:296–304

    PubMed  CAS  Google Scholar 

  • Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79:319–326

    PubMed  CAS  Google Scholar 

  • Niendorf A, Beisiegel U (1991) Low-density lipoprotein receptors. Curr Top Pathol 83:187–218

    PubMed  CAS  Google Scholar 

  • Niinikoshi J, Heughan C, Hunt TK (1973) Oxygen tension in the aortic wall of normal rabbits. Atherosclerosis 17:353–359

    Google Scholar 

  • Nilsson J (1986) Growth factors and the pathogenesis of atherosclerosis. Atherosclerosis 62:185–199

    PubMed  CAS  Google Scholar 

  • Nishigaki I, Hagihara M, Tsunekawa H, Maseki M, Yagi K (1981) Lipid peroxides levels of serum lipoprotein fractions of diabetic patients. Biochem Med 25:373–378

    PubMed  CAS  Google Scholar 

  • Numano F, Yamaguchi S, Jaima M, Watabiki S, Sakurada S, Mashimo N, Maezawa H (1979) Microassay of adenine nucleotides in intima and media of the aortic wall. Exp Mol Pathol 31:468–478

    PubMed  CAS  Google Scholar 

  • Odessy R, Chace KV (1982) Utilization of endogenous lipid, glycogen, and protein by rabbit aorta. Am J Physiol 243:H128–H132

    Google Scholar 

  • Paul RJ (1981) Chemical energetics of vascular smooth muscle. In: Bohr DF, Somlyo AP, Sparks H (eds) Handbook of physiology, Sect 2. The cardiovascular system, vol 2. Vascular smooth muscle. Williams & Wilkins, Baltimore, pp 201–235

    Google Scholar 

  • Paul RJ (1983) Functional compartmentalization of oxidative and glycolytic metabolism in vascular smooth muscle. Am J Physiol 244:C399–C409

    PubMed  CAS  Google Scholar 

  • Peterson JW, Paul RJ (1974) Aerobic glycolysis in vascular smooth muscle:relation to isometric tension. Biochem Biophys Acta 357:167–176

    PubMed  CAS  Google Scholar 

  • Quinn MT, Parthasarathy S, Fong LG, Steinberg D (1987) Oxidatively modified low density lipoproteins:a potential role in recruitment and retention of monocytes/macrophages during atherogenesis. Proc Natl Acad Sci USA 84:2995–2998

    PubMed  CAS  Google Scholar 

  • Radi R, Beckmann JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J biol Chem 266:4244–4250

    PubMed  CAS  Google Scholar 

  • Ridray S, Capron L, Hendes D, Picon L, Ktorza A (1991) Effects of fasting and refeeding on the proliferative response of rat aorta to injury. Am J Physiol 261:H190–H195

    PubMed  CAS  Google Scholar 

  • Rosenfeld ME (1991) Oxidized LDL affects multiple atherogenic cellular responses. Circulation 83:2137–2140

    PubMed  CAS  Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis—an update. N Engl J Med 314:488–500

    PubMed  CAS  Google Scholar 

  • Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis. N Engl J Med 295:369–377, 420–425

    Google Scholar 

  • Ross R, Raines E, Bowen Pope DF (1982) Growth factors from platelets, monocytes, and endothelium:their role in the cell proliferation. Ann NY Acad Sci 397:18–24

    PubMed  CAS  Google Scholar 

  • Ross R, Raines EW, Bowen Pope DF (1986) The biology of platelet derived growth factor. Cell 46:155–158

    PubMed  CAS  Google Scholar 

  • Schlote W, Boellard JW, Betz E (1980) Experimental atherosclerosis—the animal model and its relation to the human disease. Folia Angiol 28:76–79

    Google Scholar 

  • Schneiderman G, Goldstick TK (1978) Carbon monoxide-induced arterial wall hypoxia and arteriosclerosis. Atherosclerosis 30:1–15

    PubMed  CAS  Google Scholar 

  • Schwartz SM, Campbell GR, Campbell JH (1986) Replication of smooth muscle cells in vascular disease. Circ Res 58:427–444

    PubMed  CAS  Google Scholar 

  • Scott RF, Daoud AS, Wortmen B, Morrison ES, Jarmolych J (1966) Proliferation and necrosis in coronary and cerebral arteries. J Atheroscler Res 6:499–505

    Google Scholar 

  • Scott RF, Morrison ES, Kroms M (1970) Effect of cold shock on respiration and glycolysis in swine arterial tissue. Am J Physiol 219:1363–1365

    PubMed  CAS  Google Scholar 

  • Smith EB (1982) Metabolism of the arterial wall. In: Born GRV, Catapano AL, Paoletti R (eds) Factors in formation and regression of the atherosclerotic plaque. Plenum, New York, pp 21–33

    Google Scholar 

  • Solberg LA, Strong JP (1983) Risk factors and atherosclerotic lesions. A review of autopsy studies. Arteriosclerosis 3:187–198

    PubMed  CAS  Google Scholar 

  • Stange E, Papenberg J (1978) Changes in chemical and metabolic properties of rabbit aorta by dietary cholesterol, and saturated and polyunsaturated fats. Atherosclerosis 29:467–476

    PubMed  CAS  Google Scholar 

  • Stary HC (1990) The sequence of cells and matrix changes in atherosclerotic lesions of coronary arteries in the first years of life. Eur Heart J 11 [Suppl E]:3–19

    PubMed  Google Scholar 

  • St. Clair RW (1976) Metabolism of the arterial wall and atherosclerosis. Atherosclerosis Rev 1:61–118

    CAS  Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol:modifications of low density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    PubMed  CAS  Google Scholar 

  • Steinbrecher UP, Zhang H, Lougheed M (1990) Role of modified LDL in atherosclerosis. Free Radic Biol Med 9:155–168

    PubMed  CAS  Google Scholar 

  • Tanner FC, Noll G, Boulanger CM, Löscher TA (1991) Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries—role of scavenger receptor and endothelium-derived nitric oxide. Circulation 83:2012–2020

    PubMed  CAS  Google Scholar 

  • Tarczy M, Heinle H, Lindner V (1981) Early changes of vascular permeability after electrical stimulation of the common carotid artery. Pflügers Arch 389 [Suppl]:R17

    Google Scholar 

  • Thomas WA, Kim DN (1983) Atherosclerosis as a hyperplastic and/or neoplastic process. Lab Invest 48:245–255

    PubMed  CAS  Google Scholar 

  • Tries S (1990) Reaktionen der Gefäßwand unter atherogenen Reizen and therapeutischen Eingriffen:Untersuchungen zum Einfluß von Peroxidationsprodukten des LDL bzw. von Ballon-Angioplastie auf die Arteria carotis des Kaninchens. Thesis, University of Tübingen

    Google Scholar 

  • Trimm JL, Salama G, Abramson JJ (1986) Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles. J Biol Chem 261:16092–16099

    PubMed  CAS  Google Scholar 

  • Tsai AC, Chen NSC (1979) Effect of cholesterol-feeding on tissue glucose uptake, insulin-degradation, serum lipids and serum lipoperoxide levels in rabbits. J Nutr 109:606–612

    PubMed  CAS  Google Scholar 

  • Velican C, Velican D (1982) Atherosclerotic involvement of human intracranial arteries with special references to intimai necrosis. Atherosclerosis 43:59–69

    PubMed  CAS  Google Scholar 

  • Wiegel WB (1985) Aktive und passive mechanische Eigenschaften atheromatöser Proliferate der Arteria carotis bei Kaninchen. Thesis, University of Tübingen

    Google Scholar 

  • Wissler RW, Vesselinovitsch D, Getz GS (1976) Abnormalities of the arterial wall and its metabolism in atherogenesis. Prog Cardiovasc Dis 18:341–369

    PubMed  CAS  Google Scholar 

  • Wolff SP, Jiang ZY, Hunt JV (1991) Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med 10:339–352

    PubMed  CAS  Google Scholar 

  • Zemplenyi T (1974) Vascular enzymes and the relevance of their study to problems of atherogenesis. Med Clin North Am 58:293–321

    PubMed  CAS  Google Scholar 

  • Zemplenyi T (1977) Metabolic intermediates, enzymes and lysosomal activity in aortas of spontaneously hypertensive rats. Atherosclerosis 28:233–246

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heinle, H., Kling, D., Betz, E. (1993). Metabolism of Fibromuscular and Atheromatous Plaques in an Experimental Model: Causal Mechanisms for the Development of Intimal Necrosis. In: Roessner, A., Vollmer, E. (eds) Recent Progress in Atherosclerosis Research. Current Topics in Pathology, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76849-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76849-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76851-4

  • Online ISBN: 978-3-642-76849-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics