Skip to main content

Collagens in Atherosclerotic Vessel Wall Lesions

  • Chapter
Recent Progress in Atherosclerosis Research

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 87))

Abstract

The proper function of the arterial wall depends decisively on its extracellular matrix, a highly complex structure of various proteins, glycoproteins, and proteoglycans. Morphologic and functional criteria permit a number of structural components to be defined, e.g., collagen fibrils, elastic fibers and membranes, microfibrils, and basement membranes, each of which consists of several different macromolecules. This matrix is synthesized and secreted mainly by smooth muscle cells in the medial and intimal layers and by fibroblasts and smooth muscle cells in the adventitia. The structural components of the extracellular matrix are formed by specific interaction of the freshly synthesized macromolecules with other freshly synthesized or with already deposited macromolecules. Strict regulation of synthesis as well as of degradation of matrix components seem absolutely essential if the functional state of the arterial wall is to be maintained throughout the many years of an individual’s life. The mechanisms of this regulation are poorly understood. They must include downregulation on a very low state over long periods of time, but also very rapid and effective enhancement of synthesis and degradation in tissue remodeling after injury as well as slight changes of metabolic rates in adaptive processes, e.g., if strengthening of the arterial wall becomes necessary during a prolonged increase in blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abedin MZ, Ayad S, Weiss JB (1981) Type V collagen:the presence of appreciable amounts of a3(V) chain in uterus. Biochem Biophys Res Commun 102:1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Abrahamson DR (1986) Recent studies on the structure and pathology of basement membranes. J Pathol 149:257–278

    Article  PubMed  CAS  Google Scholar 

  • Adachi E, Hayashi T (1986) In vitro formation of hybrid fibrils of type V collagen and type I collagen—limited growth of type I collagen into thick fibrils by type V collagen. Connect Tiss Res 14:257–266

    Article  CAS  Google Scholar 

  • Ang AH, Tachas G, Campbell JH, Bateman JF, Campbell GR (1990) Collagen synthesis by cultures of rabbit aortic smooth muscle cells—alteration with phenotype. Biochem J 265:461–469

    PubMed  CAS  Google Scholar 

  • Arbeille BB, Fauvel FMJ, Lemesle MB, Tenza D, Legrand YJ (1991) Thrombospondin:a component of microfibrils in various tissues. J Histochem Cytochem 39:1367–1375

    Article  PubMed  CAS  Google Scholar 

  • Aumailley M, Mann K, von der Mark K, Timpl R (1989) Cell attachment properties of collagen type VI and Arg-Gly-Asp dependent binding to its a2(VI) and a3(VI) chains. Exp Cell Res 181:463–474

    Article  PubMed  CAS  Google Scholar 

  • Barnes MJ (1983) Collagen polymorphism in the normal and diseased blood vessel wall. Atherosclerosis 46:249–251

    Article  PubMed  CAS  Google Scholar 

  • Barnes MJ (1985) Collagens in atherosclerosis. Collagen Rel Res 5:65–97

    CAS  Google Scholar 

  • Barnes MJ, Morton LF, Levene CI (1976) Synthesis of collagen types I and III by pig medial smooth muscle cells in culture. Biochem Biophys Res Commun 70:339–347

    Article  PubMed  CAS  Google Scholar 

  • Barrett TB, Benditt EP (1988) Platelet-derived growth factor gene expression in human atherosclerotic plaques and normal artery wall. Proc Natl Acad Sci USA 85:2810–2814

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar R, Penfornis H, Mauviel A, Loyau G, Saklatvala J, Pujol J-P (1986) Interleukin-1 inhibits the synthesis of collagen in fibroblasts. Biochem Int 13:709–720

    PubMed  CAS  Google Scholar 

  • Birk DE, Fitch JM, Babiarz JP, Linsenmayer TF (1988) Collagen type I and type V are present in the same fibril in avian corneal stroma. J Cell Biol 106:999–1008

    Article  PubMed  CAS  Google Scholar 

  • Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF (1990) Collagen fibrillogenesis in vitro—interaction of type-I and type-V collagen regulates fibril diameter. J Cell Science 95:649–657

    PubMed  CAS  Google Scholar 

  • Burgeson RE (1987) The collagens of skin. In: Wuepper KD, Geddedahl T (eds) Biology of heritable skin diseases. Curr Probl Dermatol 17:61

    PubMed  CAS  Google Scholar 

  • Campbell GR, Campbell JH (1985) Smooth muscle phenotypic changes in arterial wall homeostasis. Implications for the pathogenesis of atherosclerosis. Exp Mol Pathol 42:139–162

    Article  PubMed  CAS  Google Scholar 

  • Campbell JH, Kocher O, Skalli O, Gabbiani G, Campbell GR (1989) Cytodifferentiation and expression of a-smooth muscle actin messenger RNA and protein during primary culture of aortic smooth muscle cells—correlation with cell density and proliferative state. Arteriosclerosis 9:633–643

    Article  PubMed  CAS  Google Scholar 

  • Chu M-L, Myers JC, Bernard MP, Ding J-F, Ramirez F (1982) Cloning and characterization of five overlapping cDNAs specific for the human pro a3 (I) collagen chain. Nucl Acids Res 10:5925–5934

    Article  CAS  Google Scholar 

  • Chu ML, Zhang R-Z, Pan T, Stokes D, Conway D, Kao H-J, Glanville R, Mayer U, Mann K-H, Dentzmann R, Timpl R (1990) Mosaic structure of globular domains in the human type VI collagen a3 chain:similarity to von Willebrand factor, fibronectin, actin, salivary proteins, and aprotein type protease inhibitors. EMBO J 9:385–393

    PubMed  CAS  Google Scholar 

  • Colombatti A, Bonaldo P (1991) The superfamily of proteins with von-Willebrand factor type-Alike domains—one theme common to components of extracellular matrix, hemostasis, cellular adhesion, and defense mechanisms. Blood 77:2305–2315

    PubMed  CAS  Google Scholar 

  • Crouch EC, Parks WC, Rosenbaum JL, et al. (1989) Regulation of collagen production by medial smooth muscle cells in hypoxic pulmonary hypertension. Am Rev Respir Dis 140:1045–1051

    PubMed  CAS  Google Scholar 

  • Dublet B, van der Rest M (1991) Type XIV collagen, a new trimeric molecule extracted from fetal bovine skin and tendon with a triple helical disulfide-bonded domain homologous to type IX and type XII collagen. J Biol Chem 266:6853–6858

    PubMed  CAS  Google Scholar 

  • Fauvel-Lafeve F, Legrand YJ (1988) Immunochemical identification of a thrombospondin-like structure in an arterial microfibrillar extract. Thromb Res 50:305–316

    Article  PubMed  CAS  Google Scholar 

  • Fleischmajer R, Olsen BR, Timpl R, Perlish JS, Lovelace O (1983) Collagen fibril formation during embryogenesis. Proc Natl Acad Sci USA 80:3354–3358

    Article  PubMed  CAS  Google Scholar 

  • Frazier WA (1987) Thrombospondin, a modular adhesive glycoprotein of platelets and nucleated cells. J Cell Biol 105:625–632

    Article  PubMed  CAS  Google Scholar 

  • Gay S, Balleisen L, Remberger K, Fietzek PP, Adelmann BC (1975) Immunohistochemical evidence for the presence of collagen type III in human arterial walls, arterial thrombi and in leukocytes, incubated with collagen in vitro. Klin Wochenschr 53:899–902

    Article  PubMed  CAS  Google Scholar 

  • Gay S, Martineshernandes A, Rhodes RK, Miller EJ (1981) The collagenous exocytoskeleton of smooth muscle cells. Collagen Rel Res 1:377–384

    CAS  Google Scholar 

  • Gordon MK, Olsen BR (1990) The contribution of collagenous proteins to tissue-specific matrix assemblies. Curr Opin Cell Biol 2:833–838

    Article  PubMed  CAS  Google Scholar 

  • Gordon MK, Gerecke DR, Dublet R, van der Rest M, Olsen BR (1989) Type XII collagen; a large multidomain molecule with partial homology to type IX collagen. J Biol Chem 264:19772–19778

    PubMed  CAS  Google Scholar 

  • Hanson AN, Bentley JP (1983) Quantitation of type Ito type III collagen ratios in small samples of human tendon, blood vessels and atherosclerotic plaque. Anal Biochem 130:32–40

    Article  PubMed  CAS  Google Scholar 

  • Henkel W, Glanville RW (1982) Covalent crosslinking between molecules of type I and type III collagen. The involvement of the N-terminal, non-helical regions of the al (I) and al (III) chains in the formation of intermolecular crosslinks. Eur J Biochem 122:205–213

    Article  PubMed  CAS  Google Scholar 

  • Inoue S (1989) Ultrastructure of basement membranes. Int Rev Cytol 117:57–98

    Article  PubMed  CAS  Google Scholar 

  • Iruela-Arispe ML, Diglio CA, Sage EH (1991) Modulation of extracellular matrix proteins by endothelial cells undergoing angiogenesis in vitro. Arteriosclerosis Thrombosis 11:805–815

    Article  CAS  Google Scholar 

  • Jaeger E, Rust S, Scharffetter K, et al. (1990) Localization of cytoplasmic collagen mRNA in human aortic coarctation:mRNA enhancement in high blood pressure-induced intimai and medial thickening. J Histochem Cytochem 38:1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Jaeger E, Rust S, Roessner A, et al. (1991) Joint occurrence of collagen mRNA containing cells and macrophages in human atherosclerotic vessels. Atherosclerosis 31:55–68

    Article  Google Scholar 

  • Jander R, Korsching E, Rauterberg J (1990) Characteristics and in vivo occurrence of type-VIII collagen. Eur J Biochem 189:601–607

    Article  PubMed  CAS  Google Scholar 

  • Kähari V-M, Jyrki H, Eero V (1987) Interleukin-1 increases collagen production and mRNA levels in cultured skin fibroblasts. Biochim Biophys Acta 929:142–147

    Article  PubMed  Google Scholar 

  • Kapoor R, Sakai LY, Funk S, Roux E, Bornstein P, Sage EH (1988) Type VIII collagen has a restricted distribution in specialized extracellular matrix. J Cell Biol 107:721–730

    Article  PubMed  CAS  Google Scholar 

  • Keene DR, Sakai LY, Bächinger HP, Burgeson RE (1987) Type III collagen can be present on banded collagen fibrils regardless of fibril diameter. J Cell Biol 115:2393–2402

    Article  Google Scholar 

  • Keene DR, Engvall E, Glanville RW (1988) Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J Cell Biol 107:1995–2006

    Article  PubMed  CAS  Google Scholar 

  • Kielty CM, Hopkinson I, Grant ME (1993) The collagen family:structure, assembly and organization in the extracellular matrix. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders. Alan R. Liss, New York, pp 103–147

    Google Scholar 

  • Kittelberger R, Davis PF, Greenhill NS (1989) Immunolocalization of type VIII collagen in vascular tissue. Biochem Biophys Res Commun 159:414–419

    Article  PubMed  CAS  Google Scholar 

  • Kühn K (1986a) The collagen family—variation in the molecular and supermolecular structure. Rheumatology 10:29–69

    Google Scholar 

  • Kühn K (1986b) The collagens—molecular and macromolecular structures. In: Tschesche H (ed) Proteinases in inflammation and tumor invasion. Walter de Gruyter, Berlin, pp 107–143

    Google Scholar 

  • Labat-Robert J, Szendroi M, Godeau G, Robert L (1985) Comparative distribution patterns of type I and type III collagens and fibronectin in human arteriosclerotic aorta. Pathol Biol 33:261–265

    PubMed  CAS  Google Scholar 

  • Labermeyer U, Kenney MC (1983) The presence of EC collagen and type IV collagen in bovine Descemet’s membranes. Biochem Biophys Res Commun 116:619–625

    Article  Google Scholar 

  • Lawler J, Hynes R-O (1986) The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol 103:1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Leblond CP, Inoue S (1989) Structure, composition, and assembly of basement membrane. Am J Anat 185:367–390

    Article  PubMed  CAS  Google Scholar 

  • Levene CI, Bartlet C, Heale G (1984) Phenotypic changes in morphology and collagen polymorphism of cultured bovine and porcine aortic endothelium. Arteriosclerosis 52:59–71

    Article  CAS  Google Scholar 

  • Linsenmayer TF (1991) Collagen. In: Hay ED (ed) Cell biology of extracellular matrix, 2nd ed. Plenum, New York, pp 7–44

    Chapter  Google Scholar 

  • McCullagh KG, Duance VC, Bishop KA (1980) The distribution of collagen types I, III and V ( AB) in normal and atherosclerotic aorta. J Pathol 130:45–65

    Article  PubMed  CAS  Google Scholar 

  • McGuire PG, Brocks DG, Killen PD, Orkin RW (1989) Increased deposition of basement membrane macromolecules in specific vessels of the spontaneously hypertensive rat. Am J Pathol 135:291–299

    PubMed  CAS  Google Scholar 

  • Mendier M, Eich-Bender SG, Vaughan L, Winter KH, Bruckner P (1989) Cartilage contains mixed fibrils of collagen types II, IX and XI. J Cell Biol 108:191–197

    Article  Google Scholar 

  • Miller EJ (1985) Recent information on the chemistry of the collagens. In: Butler WT (ed) Chemistry and biology of mineralized tissues. Ebsco Media, Birmingham, pp 80

    Google Scholar 

  • Misculin M, Dalgleish R, Kluve-Beckermann B, Rennard SI, Tolstoshev P, Brantly M, Crystal RG (1986) Human type III collagen gene expression is coordinatively modulated with the type I collagen genes during fibroblast growth. Biochemistry 25:1408–1413

    Article  Google Scholar 

  • Morton LF, Barnes MJ (1982) Collagen polymorphism in the normal and diseased blood vessel wall—investigation of collagen types I, III and V. Atherosclerosis 42:41–51

    Article  PubMed  CAS  Google Scholar 

  • Mumby SM, Raugi GJ, Bornstein P (1984) Interaction of thrombospondin with extracellular matrix proteins:selective binding to type V collagen. J Cell Biol 98:646–652

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Motoyama T (1990) Collagen species in various sized human arteries and their changes with intimai proliferation. Artery 17:96–106

    PubMed  CAS  Google Scholar 

  • Murata K, Motoyama T, Kotake C (1986) Collagen types in various layers of the human aorta and their changes with the atherosclerotic process. Atherosclerosis 60:251–262

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J (1986) Growth factors and the pathogenesis of atherosclerosis. 62:185–199

    CAS  Google Scholar 

  • Niyibizi C, Fietzek PP, van der Rest M (1984) Human placenta type V collagens. Evidence for the existence of an al(V) a2(V) a3(V) collagen molecule. J Biol Chem 259:14170–14174

    PubMed  CAS  Google Scholar 

  • Nuisgens B, Merill C, Lapiere C, Bell E (1984) Collagen biosynthesis by cells in a tissue equivalent matrix in vitro. Collagen Rel Res 4:351–364

    Google Scholar 

  • Okada Y, Katsuda S, Matsui Y, Minamoto T, Nakanishi I (1989) Altered synthesis of collagen types in cultured arterial smooth muscle cells during phenotypic modulation by dimethyl sulfoxide. Acta Pathol Jpn 39:15–22

    PubMed  CAS  Google Scholar 

  • Ooshima A (1981) Collagen aB chains:increased proportion in human atherosclerosis. Science 213:660–668

    Article  Google Scholar 

  • Osterby R (1990) Basement membrane morphology in diabetes mellitus. In: Rifkin H, Poste D (eds) Diabetes mellitus, theory and practice. Elsevier, New York, pp 220–233

    Google Scholar 

  • Palotie A, Tryggvason K, Peltonen L (1983) Components of subendothelial aorta basement membrane:immunohistochemical localization and role in cell attachment. Lab Invest 49:362–370

    PubMed  CAS  Google Scholar 

  • Paulsson M (1992) Basement membrane proteins:structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 27:93–127

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite AE, Raghow R, Stricklin GP, Poppleton H, Seyer JM, Kang AH (1988) Modulation of fibroblast functions by interleukin 1:increased steady-state accumulation of type I procollagen messenger RNAs and stimulation of other functions but not chemotaxis by human recombinant interleukin 1 a and ß. J Cell Biol 106:311–318

    Article  PubMed  CAS  Google Scholar 

  • Raspanti M, Ottani V, Ruggeri A (1989) Different architectures of the collagen fibril:morphological aspects and functional implications. Int J Macromol 11:367–371

    Article  CAS  Google Scholar 

  • Raspanti M, Ottani V, Ruggeri A (1989) Different architectures of the collagen fibril:morphological aspects and functional implications. Int J Macromol 11:367–371

    Article  CAS  Google Scholar 

  • Rauterberg J, Troyer D (1986) Type V collagen:heterogeneity in different tissues. In: Laurent P, Grimaud JA, Bienvenue J (eds) Marker proteins in inflammation, vol. 3. Walter de Gruyter, Berlin, pp 343–356

    Google Scholar 

  • Rauterberg J, Schlief H-E, Pott G (1982) The collagen of the normal and fibrotic liver. In: Gerlach U, Pott G, Rauterberg J, Voss B (eds) Connective tissue of the normal and fibrotic human liver. Thieme, Stuttgart, pp 36–37

    Google Scholar 

  • Rauterberg J, Jander R, Troyer D (1986) Type VI collagen —a structural glycoprotein with a collagenous domain. Front Matrix Biol 11:90–109

    CAS  Google Scholar 

  • Remberger J, Gay S, Fietzek PP (1975) Immunhistochemische Untersuchungen zur Kollagencharakterisierung in Leberzirrhosen. Virchows Arch [A] 367:231–240

    Article  CAS  Google Scholar 

  • Roberts AB, Flanders KC, Kondajah P, et al. (1988) Transforming growth factor ß:biochemistry and roles in embryogenesis, tissue repair and remodeling, and carcinogenesis. Recent Prog Horm Res 44:157–197

    PubMed  CAS  Google Scholar 

  • Romanic AM, Adachi E, Kadler KE, Hojima Y, Prockop DJ (1991) Co-polymerization of pNcollagen III and collagen I. pNcollagen III decreases the rate of incorporation of collagen I into fibrils, the amount of collagen I incorporated, and the diameter of the fibrils formed. J Biol Chem 266:12703–12705

    PubMed  CAS  Google Scholar 

  • Ross R (1987) Growth factors in the pathogenesis of atherosclerosis. Acta Med Scand [Suppl] 715:33–38

    CAS  Google Scholar 

  • Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis I. N Engl J Med 295:369–375

    Article  PubMed  CAS  Google Scholar 

  • Ryan PA, Davis PF, Stehbens WE (1988) The biochemical composition of haemodynamically stressed vascular tissue. III. The collagen composition of experimental arteriovenous fistulae. Atherosclerosis 71:157–163

    Article  PubMed  CAS  Google Scholar 

  • Sage H (1984) Collagen synthesis by endothelial cells in culture. In: Jaffe EA (ed) Biology of endothelial cells. Martinus Nijhoff, Boston, pp 161–171

    Google Scholar 

  • Sage H, Bornstein P (1982) Endothelial cells from umbilical vein and a hemangioendothelioma secrete basement membrane largely to the exclusion of interstitial procollagens. Arteriosclerosis 2:27–36

    Article  PubMed  CAS  Google Scholar 

  • Sage H, Pritzl P, Bornstein P (1981) Secretory phenotype of endothelial cells in culture:comparison of aortic, venous, capillary, and corneal endothelium. Arteriosclerosis 1:427–442

    Article  PubMed  CAS  Google Scholar 

  • Sage H, Pritzl P, Bornstein P (1982) Endothelial cells secrete a novel collagen type in vitro independently of prolyl hydroxylation. Collagen Rel Res 2:465–479

    CAS  Google Scholar 

  • Sanes JR, Engwall E, Butkowski R, Hunter DD (1990) Molecular heterogeneity of basal lamina:isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J Cell Biol 111:1685–1699

    Article  PubMed  CAS  Google Scholar 

  • Sankey E, Barnes MJ (1984) Comparison of the collagenous products synthesised in culture by pig aortic endothelial and smooth-muscle cells. J Biochem 218:11–18

    CAS  Google Scholar 

  • Sarzani R, Brecher P, Chobanian AV (1989) Growth factor expression in aorta of normotensive and hypertensive rats. J Clin Invest 83:1404–1408

    Article  PubMed  CAS  Google Scholar 

  • Sawada H, Konomi H, Hirosawa K (1990) Characterization of the collagen in the hexagonal lattice of Descemet’s membrane—relation of type VIII collagen. J Cell Biol 110:219–227

    Article  PubMed  CAS  Google Scholar 

  • Schlumberger W, Thie M, Rauterberg J, Robenek H (1991) Collagen synthesis in cultured aortic smooth muscle cells—modulation by collagen lattice culture, transforming growth factor ß1, and epidermal growth factor. Arteriosclerosis Thromb 11:1660–1666

    Article  CAS  Google Scholar 

  • Schuppan D, Becker J, Boehm H, Hahn EC (1986) Immunofluorescent localization of type-V collagen as a fibrillar component of the interstitial connective tissue of human oral mucosa, artery and liver. Cell Tissue Res 243:535–543

    Article  PubMed  CAS  Google Scholar 

  • Shekkonin BV, Domogatsky AP, Muzykantov VR, Idelson GL, Rukosuev VS (1985) Distribution of type-1, type-3, type-4 and type-5 collagen in normal and atherosclerotic human arterial wall—immunological characteristics. Collagen Rel Res 5:355–368

    Google Scholar 

  • Shekkonin BV, Domogatsky AP, Idelson GL, Koteliansky VE, Rukosuev VS (1987) Relative distribution of fibronectin and type I, III, IV, V collagens in normal and atherosclerotic intima of human arteries. Atherosclerosis 67:9–16

    Article  Google Scholar 

  • Shiraishi M, Segewa M, Takebayashi S (1980) An electron-microscopic study on aging of collagenous fiibrils in the larger blood vessels of humans. J Electron Microsc 29:139–143

    CAS  Google Scholar 

  • Silverstein RL, Leung LLK, Nachman RL (1986) Thrombospondin:a versatile multifunctional glycoprotein. Arteriosclerosis 6:245–254

    Article  PubMed  CAS  Google Scholar 

  • Solis-Herruzo JA, Brenner DA, Chojkier M (1988) Tumor necrosis factor-a inhibits collagen gene transcription and collagen synthesis in cultured human fibroblasts. J Biol Chem 263:5841–5845

    PubMed  CAS  Google Scholar 

  • Stary HC, Blankenhorn DH, Chandler AB, et al. (1992) A definition of the intima of human arteries and of its atherosclerosis-prone regions—a report from the Committe on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association—special report. Arteriosclerosis Thromb 12:120–134

    Article  CAS  Google Scholar 

  • Thie M, Schlumberger W, Semich R, Rauterberg J, Robenek H (1991) Aortic smooth muscle cells in collagen lattice culture—effects on ultrastructure, proliferation and collagen synthesis. Eur J Cell Biol 55:295–304

    PubMed  CAS  Google Scholar 

  • Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487

    Article  PubMed  CAS  Google Scholar 

  • Timpl R, Engel J (1987) Type VI collagen. In: Mayne R, Burgeson RE (eds) Structure and function of collagen types. Academic, Orlando, pp 105–143

    Google Scholar 

  • Trüeb B, Schreier T, Bruckner P, Winterhalter K 1987 Type VI collagen represents a major fraction of connective tissue collagens. Eur J Biochem 166:699–703

    Article  Google Scholar 

  • Tseng SCG, Smuckler D, Stern R (1982) Comparison of collagen types in adult and fetal bovine corneas. J Biol Chem 256:2627–2633

    Google Scholar 

  • Tsukada T, Tippens D, Gordon D, Ross R, Gown AM (1987a) HHF35, a muscle-actin-specific monoclonal antibody 1 Immunocytochemical and biochemical characterization. Am J Pathol 126:51–60

    CAS  Google Scholar 

  • Tsukada T, McNutt MA, Ross R, Gown AM (1987b) HHF35, a muscle-actin-specific monoclonal antibody. 2. Reactivity in normal, reactive, and neoplastic human tissues. Am J Pathol 127:389–402

    CAS  Google Scholar 

  • van der Rest M, Garrone R (1990) Collagens as multidomain proteins. Biochimie 72:473

    Article  PubMed  Google Scholar 

  • Tümmers M, Troyer D, Banch HJ, Rauterberg J (1987) Endothelial cells on fibrillar collagen gels and plastics substrate dependent morphology, synthesis, and secretion. Eur J Cell Biol 46, Suppl 22:75

    Google Scholar 

  • Varga J, Rosenbloom J, Jimenez SA (1987) Transforming growth factor ß (TGF ß) causes a persistent increase in steady-state amounts of type I and III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 247:597–604

    PubMed  CAS  Google Scholar 

  • Vaughan L, Mendier M, Huber S, Bruckner P, Winterhalter KH, Irwin MI, Mayne R (1988) D-periodic distribution of collagen type IV along cartilage fibrils. J Cell Biol 106:991

    Article  PubMed  CAS  Google Scholar 

  • Voss B, Rauterberg J (1986) Localization of collagen types I, III, IV and V, fibronectin and laminin in human arteries by the indirect immunofluorescence method. Pathol Res Pract 181:568

    PubMed  CAS  Google Scholar 

  • Vuorio E, de Combrugghe B (1990) The family of collagen genes. Ann Rev Biochem 59:837–872

    Article  PubMed  CAS  Google Scholar 

  • Wagner WD (1990) Modification of collagen and elastin in the human atherosclerotic plaque. In: Glagov S, Neumann WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, New York, pp 167–188

    Chapter  Google Scholar 

  • Weber L, Meigel WN, Rauterberg J (1977) SDS-polyacrylamide gel electrophoretic determination of type I and type III in small skin samples. Arch Dermatol Res 258:251–257

    Article  PubMed  CAS  Google Scholar 

  • Wight TN, Raugi GJ, Mumby SM, Bornstein P (1985) Light microscopic immunolocation of thrombospondin in human tissues. J Histochem Cytochem 33:295–302

    Article  PubMed  CAS  Google Scholar 

  • Wilcox JN, Smith KM, Williams LT, Schwartz SM, Gordon D (1988) Platelet-derived growth factor mRNA detection in human atherosclerotic plaque by in situ hybridization. J Clin Invest 82:1134–1143

    Article  PubMed  CAS  Google Scholar 

  • Zwadlo G, Bröcker E-B, von Bassewitz D-B, Feige U, Sorg C (1985) Monoclonal antibody to a differentiation antigen present on mature macrophages and absent from monocytes. J Immunol 134:1487–1492

    PubMed  CAS  Google Scholar 

  • Zwadlo G, Schlegel R, Sorg C (1986) A monoclonal antibody to a subset of human macophages found only in the peripheral blood and inflammatory tissue. J Immunol 137:512–518

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rauterberg, J., Jaeger, E., Althaus, M. (1993). Collagens in Atherosclerotic Vessel Wall Lesions. In: Roessner, A., Vollmer, E. (eds) Recent Progress in Atherosclerosis Research. Current Topics in Pathology, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76849-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76849-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76851-4

  • Online ISBN: 978-3-642-76849-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics