Skip to main content

In Situ Localization and Distribution Pattern of Apolipoproteins in Arterial Walls: A Comparative Study in Atherosclerosis and Renal Transplant Arteriopathy

  • Chapter
Recent Progress in Atherosclerosis Research

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 87))

Abstract

Disorders of lipid metabolism are among the main risk factors for atherosclerosis, others being cigarette smoking, hypertension, diabetes mellitus, and age. In recent years, the impact of lipid metabolic disorders on the development of arteriosclerotic disease has been defined in greater detail by biochemical, genetic, clinical, and epidemiologic studies on the physiology and pathophysiology of lipid metabolism in general, and on the particular role of lipids and lipoproteins in atherogenesis. According to epidemiologic results, cholesterol plays a major part in this context:experimental studies of animals and clinical observations in humans have confirmed that the mere increase in cholesterol levels in the blood, i.e., without concurrent risk factors, is liable to provoke atherosclerotic changes.

This chapter is dedicated to Prof. Dr. K. M. Müller, Bochum

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander K (1984) Krankheiten der Arterien. In: Siegenthaler W, Kaufmann W, Hornborstel H, Waller HD (ed) Lehrbuch der Inneren Medizin. Thieme, Stuttgart, pp 2.2–2.30

    Google Scholar 

  • Amanuma K, Kanaseki T, Ikeuchi Y, Ohkuma S, Takano T (1986) Studies on fine structure and location of lipids in quick-freeze replicas of atherosclerotic aorta of WHHL rabbits. Virchows Arch [A] 410:231–238

    CAS  Google Scholar 

  • Basu SK, Brown MS, Ho YK, Havel RJ, Goldstein JL (1981) Mouse macrophages synthesize and secrete a protein resembling apolipoprotein E. Proc Natl Acad Sci USA 78:7545–7549

    Article  CAS  Google Scholar 

  • Basu SK, Ho YK, Brown MS, Bilheimer DW, Anderson RGW, Goldstein JL (1982) Biochemical and genetic studies of the apoprotein E secreted by mouse macrophages and human monocytes. J Biol Chem 257:9788–9795

    CAS  Google Scholar 

  • Bedossa P, Poynard T, Abella A, Paraf F, Lemaigre G, Martin E (1989) Localization of apolipoprotein A-I and apolipoprotein A-II in human atherosclerotic arteries. Arch Pathol Lab Med 113:777–780

    PubMed  CAS  Google Scholar 

  • Bondjers G, Wiklund O, Fager G, Camejo EH, Camejo G (1990) Transfer of lipoproteins from plasma to the cell populations of the normal and atherosclerotic tissue. Eur Heart J 11 [Suppl E]:158–163

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage:implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1985) Arteriosklerose and Cholesterin:Die Rolle der LDL-Rezeptoren. Spektrum der Wissenschaft 1:96–106

    Google Scholar 

  • Camejo G, Rosengren B, Olson U, Lopez F, Olofson SO, Westerlund C, Bondjers G (1990) Molecular basis of the association of arterial proteoglycans with low density lipoproteins:its effect on the structure of the lipoprotein particle. Eur Heart J 11 [Suppl E]:164–173

    PubMed  CAS  Google Scholar 

  • Carter RS, Siegel RJ, Chai AU, Fishbein MC (1987) Immunohistochemical localization of apolipoproteins A-I and B in human carotid arteries. J Pathol 153:31–36

    Article  PubMed  CAS  Google Scholar 

  • Driscoll DM, Getz CS (1984) Extrahepatic synthesis of apolipoprotein E. J Lipid Res 25:1368

    CAS  Google Scholar 

  • Feldman DL, Hoff HF, Gerrity RG (1984) Immumhistochemical localization of apoprotein B in aortas from hyperlipemic swine. Arch Pathol Lab Med 108:817–822

    PubMed  CAS  Google Scholar 

  • Francone OL, Fielding CJ (1990) Initial steps in reverse cholesterol transport:the role of short-lived cholesterol acceptors. Eur Heart J 11 [Suppl E]:218–234

    PubMed  CAS  Google Scholar 

  • Gendre PMJ, Bounader-Bechennec FM (1989) Freeze-fracture study of the intramembrane particle density in the aortic smooth muscle cell plasmalemma of rabbits fed an atherogenic diet. Atherosclerosis 76:1–7

    Article  PubMed  CAS  Google Scholar 

  • Gerrity RG (1981a) The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 103:181–190

    CAS  Google Scholar 

  • Gerrity RG (1981b) The role of the monocyte in atherogenesis. II. Migration of foam cells from atherosclerotic lesions. Am J Pathol 103:191–200

    CAS  Google Scholar 

  • Getz GS, Mazzone T, Soltys P, Bates SR (1988) Atherosclerosis and apoprotein E. Arch Pathol Lab Med 112:1048–1055

    CAS  Google Scholar 

  • Glenn KC, Ross R (1981) Human monocyte-derived growth factor(s) for mesenchymal cells activation of secretion of endotoxin and concavalin A. Cell 25:603–615

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1977) The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 46:897–930

    Article  PubMed  CAS  Google Scholar 

  • Haberland ME, Fong D, Cheng L (1990) Malondialdehyde, modified lipoproteins, and atherosclerosis. Eur Heart J 11 [Suppl E]:100–104

    PubMed  CAS  Google Scholar 

  • Harrach B, Robenek H (1990) Polyclonal antibodies against prefixed apolipoprotein A-I:an approach to circumventing fixation-induced loss of antigenicity in immunocytochemistry. Arteriosclerosis 10:564–578

    Article  PubMed  CAS  Google Scholar 

  • Harrach B, Robenek H, Vollmer E, Roessner A, Bosse A, Drescher H, Böcker W (1989) Immunelektronenmikroskopische Lokalisation von Apolipoproteinen in Zellkulturen and dem arteriosklerotischen Plaque. Verh Dtsch Ges Pathol 73:675

    Google Scholar 

  • Harris KPG, Russell GJ, Parvin SD, Veitch PS (1986) Alterations in lipid and carbohydrate metabolism attributable to cyclosporin A in renal transplant recipients. Br Med J 292:16

    Article  CAS  Google Scholar 

  • Hashimoto S, Wong H, Blissard D, Anderson D (1988) Cholesteryl ester accumulation in smooth muscle cells after uptake of necrotic products from atherosclerotic lesions. Exp Mol Pathol 49:196–205

    Article  PubMed  CAS  Google Scholar 

  • Hegele RA (1989) Lipoprotein (a):an emerging risk factor for atherosclerosis. Can J Cardiol 5:263–267

    PubMed  CAS  Google Scholar 

  • Ho YK, Brown MS, Goldstein JL (1980) Hydrolysis and excretion of cytoplasmic cholesteryl esters by macrophages:stimulation by high density lipoproteins and other agents. J Lipid Res 21:391–398

    PubMed  CAS  Google Scholar 

  • Hoff HF, Gaubatz JW (1975) Ultrastructural localization of plasma lipoproteins in human intracranial arteries. Virchows Arch [A] 369:111–121

    Article  CAS  Google Scholar 

  • Hoff HF, Gaubatz JW (1977) Ultrastructural localization of apolipoprotein B in human aortic and coronary atherosclerotic plaques. Exp Mol Pathol 26:214–227

    Article  PubMed  CAS  Google Scholar 

  • Hoff HF, Heideman CL, Jackson RL, Bayardo RJ, Kim HS, Gotto AM (1975a) Localization patterns of plasma apolipoproteins in human atherosclerotic lesions. Circ Res 37:72–79

    PubMed  CAS  Google Scholar 

  • Hoff HF, Lie JT, Titus JL, Byardo RJ, Jackson RL, De Bakey ME, Gotto AM (1975b) Lipoprotein in atherosclerotic lesions. Arch Pathol Lab Med 99:253–258

    CAS  Google Scholar 

  • Hoff HF, O’Neil J, Pepin JM, Cole TB (1990) Macrophage uptake of cholesterol-containing particles derived from LDL and isolated from atherosclerotic lesions. Eur Heart J 11 [Suppl E]:105–113

    PubMed  CAS  Google Scholar 

  • Humbel B, Schwarz H (1989) Freeze substitution for immunochemistry. In: Verkleij AJ, Leunissen JLM (eds) Immunogold labeling in cell biology. CRC Press, Boca Raton, FL., pp 115–134

    Google Scholar 

  • Kashyap ML (1989) Basic considerations in the reversal of atherosclerosis:significance of high-density lipoprotein in stimulating reverse cholesterol transport. Am J Cardiol 63:56H - 59H

    Article  PubMed  CAS  Google Scholar 

  • Kasiske BL (1988) Risk factors for accelerated atherosclerosis in renal transplant recipients. Am J Med 84:985–992

    Article  PubMed  CAS  Google Scholar 

  • Kasiske BL, Umen AJ (1987) Persistent hyperlipidemia in renal transplant patients. Medicine 66:309–316

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Okubo M, Marumo F, Uchida H (1983) De novo development of hypercholesterolemia and elevated high-density lipoprotein cholesterol:apoprotein Al ratio in patients with chronic renal failure following kidney transplantation. Nephron 35:239–240

    Article  Google Scholar 

  • Linden T, Wiklund O, Fager G, Olofsson SO, Bondjers G (1986) A new microimmunoassay for apolipoprotein B in arterial tissue. Atherosclerosis 62:227–237

    Article  PubMed  CAS  Google Scholar 

  • Lowry RP, Soltys G, Peters L, Mangel R, Sniderman AD (1987) Type II hyperlipoproteinemia, hyperapobetalipoproteinemia, and hyperalphalipoproteinemia following renal transplantation:implications for atherogenic risk. Transplant Proc 19/4:3426–3430

    Google Scholar 

  • Mawhinney TP, Augustyn JM, Fritz KE (1978) Glycosaminoglycan-lipoprotein complexes from aortas of hypercholesterolemic rabbits. I. Isolation and characterization. Atherosclerosis 31:155–167

    Article  PubMed  CAS  Google Scholar 

  • Mitchinson MJ, Carpenter KLH, Ball RY (1990) The role of macrophages in human atherosclerosis. In: Glagov S, Newman WP, Schaffer AS (eds) Pathobiology of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 121–128

    Chapter  Google Scholar 

  • Mora R, Lupu F, Simionescu N (1987) Prelesional events in atherogenesis. Atherosclerosis 67:143–154

    Article  PubMed  CAS  Google Scholar 

  • Mora R, Lupu F, Simionescu N (1989) Cytochemical localization of ß-lipoproteins and their components in successive stages of hyperlipidemic atherogenesis or rabbit aorta. Atherosclerosis 79:183–195

    Article  PubMed  CAS  Google Scholar 

  • Munro JM, Cotran RS (1988) Biology of disease. The pathogenesis of atherosclerosis, atherogenesis and inflammation. Lab Invest 58:249–261

    PubMed  CAS  Google Scholar 

  • Nakashima Y, Matsushima T, Takahara K, Kuroiwa A, Nakamura M (1985) The analysis of lipids and glycosaminoglycans of low-density-lipoprotein-glycosaminoglycan complexes isolated from normal, fatty streaks, and fibrous plaque of human aortic intima. Int Angiol 4:487–493

    PubMed  CAS  Google Scholar 

  • Nicoll A, Duffield R, Lewis B (1981) Flux of plasma lipoproteins into human arterial intima. Atherosclerosis 39:229–242

    Article  PubMed  CAS  Google Scholar 

  • Niendorf A, Rath M, Wolf K, Peters S, Arps H, Beisiegel U, Dietel M (1990a) Morphological detection and quantification of lipoprotein (a) deposition in atheromatous lesions of human aorta and coronary arteries. Virchows Arch [A] 417:105–111

    Article  CAS  Google Scholar 

  • Niendorf A, Rath M, Wolf K, Arps H, Beisiegel U, Dietel M (1990b) Morphometrische Analyse der Ablagerungen des Lipoproteins (a) in atheromatösen Läsionen der Aorta and der Koronararterien. In: Assmann G, Betz E, Heinle H, Schulte H (eds) Neue Aspekte aus Zellbiologie and Molekulargenetik, Epidemiologie and Klinik. Vieweg, Braunschweig-Wiesbaden, pp 214–219

    Google Scholar 

  • Palinski W, Rosenfeld ME, Ylä-Herttuala S, et al. (1989) Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 86:1372–1376

    Article  PubMed  CAS  Google Scholar 

  • Palinski W, Ylä-Herttuala S, Rosenfeld ME, et al. (1990) Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 10:325–335

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnamurthy B, Srinivasan SR, Vijayagopal P, Berenson GS (1990) Arterial wall proteoglycans–biological properties related to pathogenesis of atherosclerosis. Eur Heart J 11 [Suppl E]:148–157

    PubMed  CAS  Google Scholar 

  • Rath M, Niendorf A, Reblin T, Dietel M, Krebber HJ, Beisiegel U (1989) Detection and quantification of lipoprotein(a) in the arterial wall of 107 coronary bypass patients. Arteriosclerosis 9:579–592

    Article  PubMed  CAS  Google Scholar 

  • Rogers KA, Hoover RL, Castellot JJ, Robinson JM, Karnovsky MJ (1986) Dietary cholesterol-induced changes in macrophage characteristics. Relationship to atherosclerosis. Am J Pathol 125:284–291

    PubMed  CAS  Google Scholar 

  • Rosenfeld ME, Palinski W, Ylä-Herttuala S, Butler S, Witzum JL (1990) Distribution of oxidation-specific lipoprotein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 10:336–349

    Article  PubMed  CAS  Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis—an update. N Engl J Med 314:488–500

    Article  PubMed  CAS  Google Scholar 

  • Ross R (1990) Mechanisms of atherosclerosis—a review. Adv Nephrol 19:79–86

    CAS  Google Scholar 

  • Salinas-Madrigal L, Pardo-Mindan FJ, Llausas-Magana E, Erro-Aguirre E (1988) Complications of renal transplant:a morphologic evaluation. Semin Diagn Pathol 5:80–103

    PubMed  CAS  Google Scholar 

  • Salisbury BGJ, Falcone DJ, Minick CR (1985) Insoluble low density lipoprotein-proteoglycan complexes enhance cholesteryl ester accumulation in macrophages. Am J Pathol 120:6–11

    PubMed  CAS  Google Scholar 

  • Schmitz G, Robenek H, Lohmann U, Assmann G (1985a) Interaction of high density lipoproteins with cholesteryl ester-laden macrophages:biochemical and morphological characterization of cell surface receptor binding, endocytosis and resecretion of high density lipoproteins by macrophages. EMBO J 4:613–622

    PubMed  CAS  Google Scholar 

  • Schmitz G, Niemann R, Brennhausen B, Krause R, Assmann G (1985b) Regulation of high density lipoprotein receptors in cultured macrophages. EMBO J 4:2773–2779

    PubMed  CAS  Google Scholar 

  • Schmitz G, Robenek H, Assmann G (1987) Role of high-density lipoprotein receptor cycle in macrophage cholesterol metabolism. Atherosclerosis Rev 16:95–107

    Google Scholar 

  • Schmitz G, Brüning T, Williamson E, Nowicka G (1990) The role of HDL in reverse cholesterol transport and its disturbances in Tangier disease and HDL deficiency with xanthomas. Eur Heart J 11 [Suppl E]:197–211

    PubMed  CAS  Google Scholar 

  • Shekhonin B, Tararak EM, Samokhin GP, et al. (1990) Visualization of apo B, fibrinogen/fibrin, and fibronectin in the intima of normal human aorta and large arteries and during atherosclerosis. Atherosclerosis 82:213–226

    Article  PubMed  CAS  Google Scholar 

  • Sjöstrand FS (1990) Common sense in electron microscopy. About cryofixation, freeze-substitution, low temperature embedding, and low denaturation embedding. J Struct Biol 103:135–139

    Article  Google Scholar 

  • Slotte JP (1990) HDL receptors and cholesterol efflux from parenchymal cells. Eur Heart J 11 [Suppl E]:212–217

    PubMed  CAS  Google Scholar 

  • Smith EB (1990) Transport, interactions and retention of plasma proteins in the intima:the barrier function of the internal elastic lamina. Eur Heart J 11 [Suppl E]:72–81

    PubMed  CAS  Google Scholar 

  • Smith EB, Staples EM (1980) Distribution of plasma proteins across the human aortic wall. Atherosclerosis 37:578–590

    Article  Google Scholar 

  • Srinivasan SR, Vijayagopal P, Dalfers ER, Abbate B, Radhakrishnamurthy B, Berenson GS (1986) Low density lipoprotein retention by aortic tissue. Atherosclerosis 62:201–208

    Article  PubMed  CAS  Google Scholar 

  • Stary HC (1983) Macrophages in coronary artery, in aortic intima, and in atherosclerotic lesions of children and young adults up to age 29. In: Schettler FG, Gotto AM, Middelhoff G, Habenicht ARJ, Jurutka KR (eds) Sixth international symposium on atherosclerosis. Springer, New York Berlin Heidelberg, pp 462–466

    Google Scholar 

  • Stary HC (1987a) Macrophages, macrophage foam cells, and eccentric intimai thickening in the coronary arteries of young children. Atherosclerosis 64:91–108

    Article  PubMed  CAS  Google Scholar 

  • Stary HC (1987b) Evolution and progression of atherosclerosis in the coronary arteries of children and adults. In: Bates SR, Gangloff ED (eds) Atherosclerosis and aging. Springer, New York Berlin Heidelberg, pp 20–36

    Chapter  Google Scholar 

  • Stary HC (1990a) Changes in the cells of atherosclerotic lesions as advanced lesions evolve in coronary arteries of children and young adults. In: Glagov S, Newman WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 93–106

    Chapter  Google Scholar 

  • Stary HC (1990b) The sequence of cell and matrix changes in atherosclerotic lesions in the first forty years of life. Eur Heart J 11 [Suppl E]:3–19

    PubMed  Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witzum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–923

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz A, Kaffarnik H (1989) Lipoproteinrezeptoren and Apolipoprotein. Diagnose Labor 4:157–170

    Google Scholar 

  • Tokuyasu KT (1984) Immuno-ultracryomicrotomy. In: Polak JM, Varndell JM (eds) Immunolabeling for electron microscopy. Elsevier, Amsterdam, pp 71–82

    Google Scholar 

  • Vathsala A, Weinberg RB, Schoenberg L, et al. (1989) Lipid abnormalities in renal transplant recipients treated with cyclosporine. Transplant Proc 21:3670–3673

    PubMed  CAS  Google Scholar 

  • Vijayagopal P, Srinivasan SR, Radhakrishnamurthy B, Berenson GS (1981) Interaction of serum lipoproteins and a proteoglycan from bovine aorta. J Biol Chem 256:8234–8241

    PubMed  CAS  Google Scholar 

  • Vollmer E, Roessner A (1990) Neue Techniken für die feingewebliche Ultrastrukturanalyse. Arb. Gem. Rhein. Westf. Pathologen, Bochum, March 1990. Ber Pathol 111:372

    Google Scholar 

  • Vollmer E, Roessner A, Wuisman P, Härle A, Grundmann E (1989a) The proliferation behavior of bone tumors investigated with the monoclonal antibody Ki-67. In: Roessner A (ed) biological characterization of bone tumors. Springer, Berlin Heidelberg New York (Current Topics in Pathology, vol 80:91–114 )

    Google Scholar 

  • Vollmer E, Brust J, Roessner A, et al. (1989b) Immunhistochemische Untersuchungen zur Verteilung von Apolipoproteinen in der arteriosklerotischen Gafäßwand menschlicher Arterien. Verh Dtsch Ges Pathol 73:445

    Google Scholar 

  • Vollmer E, Roessner A, Bosse A, et al. (1991a) Immunohistochemical double labeling of macrophages, smooth muscle cells, and apolipoprotein E in the atherosclerotic Plaque. Path Res Pract 187:184–188

    CAS  Google Scholar 

  • Vollmer E, Bosse A, Bögeholz J, et al. (199lb) Apolipoproteins and immunohistochemical differentiation of cells in the arterial wall of kidneys in transplant arteriopathy. Pathol Res Pract 187:957–962

    CAS  Google Scholar 

  • Vollmer E, Brust J, Roessner A, et al. (1991c) Distribution patterns of apolipoproteins A„ A2 and B in the wall of atherosclerotic vessels. Virchows Arch [A] 419:79–88

    Article  CAS  Google Scholar 

  • Watanabe T, Hirata M, Yoshikawa Y, Nagafuchi Y, Toyoshima H, Watanabe T (1985) Role of macrophages in atherosclerosis. Lab Invest 53:80–90

    PubMed  CAS  Google Scholar 

  • Weisgraber KH, Mahley RW (1980) Subfractionation of human high density lipoproteins by heparin-sepharose affinity chromatography. J Lipid Res 21:316–325

    PubMed  CAS  Google Scholar 

  • Ylä-Herttuala S, Solakivi T, Hirvonen J, et al. (1987) Glycosaminoglycans and apolipoproteins B and A-I in human aortas. Arteriosclerosis 7:333–340

    Article  PubMed  Google Scholar 

  • Yomantas S, Elner VM, Schaffner T, Wissler RW (1984) Immunhistochemical localisation of apolipoprotein B in human atherosclerotic lesions. Arch Pathol Lab Med 108:374–378

    PubMed  CAS  Google Scholar 

  • Yutani C, Go S, Imakita M, Ishibashi-Ueda H, Hatanaka K, Yamamoto A (1987) Autopsy findings in two patients with homozygous familial hypercholesterolemia. Special references to apolipoprotein B localization and internalization defect of low density lipoprotein. Acta Pathol Jpn 37:1489–1504

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vollmer, E., Roessner, A. (1993). In Situ Localization and Distribution Pattern of Apolipoproteins in Arterial Walls: A Comparative Study in Atherosclerosis and Renal Transplant Arteriopathy. In: Roessner, A., Vollmer, E. (eds) Recent Progress in Atherosclerosis Research. Current Topics in Pathology, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76849-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76849-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76851-4

  • Online ISBN: 978-3-642-76849-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics