Skip to main content

Lipoprotein Receptors on Macrophages and Smooth Muscle Cells

  • Chapter
Recent Progress in Atherosclerosis Research

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 87))

Abstract

Atherosclerosis is now recognised as a multifactorial disease process in which a number of distinct but overlapping pathways of pathogenesis are involved. The major current hypotheses of atherogenesis focus on (a) response of the arterial wall to injury, (b) lipid infiltration into the intima, (c) smooth muscle cell transformation, (d) thrombosis, (e) immune mechanisms and (f) viruses as aetiological agents (Ross 1986; Steinberg et al. 1989; Scott 1989; Penn et al. 1986; Libby and Hansson 1991; Hajjar 1991). These hypotheses are not mutually exclusive, but reflect different aspects of an interactive disease process in which various factors may assume different degrees of importance in different stages and instances of the disease. Underlying all these processes is a complex web of interactions between the cellular constituents of the arterial wall, their secreted products and lipoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RGW, Brown MS, Goldstein JL (1977) Role of coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 10:351–364

    PubMed  CAS  Google Scholar 

  • Anderson RGW, Brown MS, Beisiegel U, Goldstein JL (1982) Surface distribution and recycling of the low density lipoprotein receptor as visualized with antireceptor antibodies. J Cell Physiol 93:523–531

    CAS  Google Scholar 

  • Aquel NM, Bell RY, Walmann H, Mitchinson MJ (1985) Identification of macrophages and smooth muscle cells in human atherosclerosis using monoclonal antibodies. J Pathol 146:197–204

    Google Scholar 

  • Assmann G (1982) Lipid metabolism and atherosclerosis. Schattauer, Stuttgart, p 1

    Google Scholar 

  • Assmann G, Funke H (1990) HDL metabolism and atherosclerosis. J Cardiovasc Pharmacol 16:15–20

    Google Scholar 

  • Bachorik PS, Franklin FA, Virgil DG, Kwiterovich PO (1982) High-affinity uptake and degradation of apolipoprotein E free high-density lipoprotein and low-density lipoprotein in cultured porcine hepatocytes. Biochemistry 21:5675–5684

    PubMed  CAS  Google Scholar 

  • Badimore JJ, Badimore L, Galvez A, Dische R, Fuster V (1989) High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits. Lab Invest 60:455–461

    Google Scholar 

  • Basu SK, Brown MS, Ho YK, Havel JR, Goldstein JL (1981) Mouse macrophages synthesize and secrete a protein resembling apo E. Proc Natl Acad Sci USA 78:7545–7549

    CAS  Google Scholar 

  • Bendayan M (1984) Protein A-gold electron microscopic immunocytochemistry:methods, applications and limitations. J Electron Microsc Tech 1:243–270

    CAS  Google Scholar 

  • Bendayan M (1989) Protein A-gold and protein G-gold post-embedding immunoelectron microscopy. In: Hayat MA (ed) Colloidal gold:principles, methods and applications, vol 1. Academic, New York, pp 33–94

    Google Scholar 

  • Bernard DW, Rodriguez A, Rothblat GH, Glick JM (1990) Influence of high density lipoprotein on esterified cholesterol stores in macrophages and hepatoma cells. Arteriosclerosis 10:135–144

    PubMed  CAS  Google Scholar 

  • Biesbrock R, Oram JF, Albers JJ, Biermann EL (1983) Specific high-affinity binding of high density lipoproteins to cultured human skin fibroblasts and arterial smooth muscle cells. J Clin Invest 71:525–539

    Google Scholar 

  • Bradley WA, Gianturco SH (1988) Lipoprotein receptors in cholesterol metabolism. In: Yeagle PL (ed) Biology of cholesterol. CRC, Boca Raton, pp 95–120

    Google Scholar 

  • Brown D (1981) Polyvinyl coating an improvement of the freeze-fracture technique. J Microsc 121:283–287

    PubMed  CAS  Google Scholar 

  • Brown D (1989) Low-temperature embedding and cryosectioning in the immunocytochemical study of membrane recycling. In: Plattner H (ed) Electron microscopy of subcellular dynamics. CRC, Boca Raton, pp 179–197

    Google Scholar 

  • Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage:implications for cholesterol deposition in atherosclerosis. Ann Rev Biochem 52:223–261

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1984) How LDL receptors influence cholesterol and atherosclerosis. Sci Am 251:58–66

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL, Krieger M, Ho YK, Anderson RGW (1979) Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Physiol 82:597–613

    CAS  Google Scholar 

  • Campbell GR, Campbell JH (1990) The phenotypes of smooth muscle expressed in human atheroma. Ann NY Acad Sci 598:143–158

    PubMed  CAS  Google Scholar 

  • Campbell JH, Black MJ, Campbell GR (1989) Replication of smooth muscle cells in atherosclerosis and hypertension. In: Meyer P, Marche P (eds) Blood cells and arteries in hypertension and atherosclerosis. Raven, New York, pp 15–33

    Google Scholar 

  • Daoud AS, Jarmolych J, Augustyn JM, Fritz KE (1981) Sequential morphologic studies of regression of advanced atherosclerosis. Arch Pathol Lab Med 105:233–239

    PubMed  CAS  Google Scholar 

  • Daoud AS, Fritz KE, Jarmolych J, Frank AS (1985) Role of macrophages in regression of atherosclerosis. 454:101–114

    CAS  Google Scholar 

  • DeLamatre JG, Carter RM, Hornick CA (1991) Evidence for extralysosomal hydrolysis of high density lipoprotein cholesteryl esters in rat hepatoma cells (Fu 5AH):a model for delivery of high density lipoprotein cholesterol. J Cell Physiol 146:18–24

    PubMed  CAS  Google Scholar 

  • Doerr-Schott J (1989) Colloidal gold for multiple staining. In: Hayat MA (ed) Colloidal gold:principles, methods and applications, vol 1. Academic, New York, pp 145–190

    Google Scholar 

  • Draeger A, Amos WB, Ikebe M, Small JV (1990) The cytoskeletal and contractile apparatus of smooth muscle:contraction bands and segmentation of the contractile elements. J Cell Physiol 111:2463–2473

    CAS  Google Scholar 

  • Dudrick SJ (1987) Regression of atherosclerosis by the intravenous infusion of specific biochemical nutrient substrates in animals and humans. Ann Surg 206:296–315

    PubMed  CAS  Google Scholar 

  • Eisenberg S (1984) High density lipoprotein metabolism. J Lipid Res 25:1017–1058

    PubMed  CAS  Google Scholar 

  • Ellsworth JL, Fong LG, Kraemer FB, Cooper AD (1990) Differences in the processing of chylomicron remnants and ß-VLDL by macrophages. J Lipid Res 31:1399–1411

    PubMed  CAS  Google Scholar 

  • Fan J, Yamada T, Tokunaga O, Watanabe T (1991) Alterations in the functional characteristics of macrophages induced by hypercholesterolemia. Virchows Arch [B] 61:19–27

    CAS  Google Scholar 

  • Fidge NH, Neste PJ (1985) Identification of apolipoproteins involved in the interaction of human high density lipoprotein3 with receptors on cultured cells. J Biol Chem 260:3570–3575

    PubMed  CAS  Google Scholar 

  • Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA (1980) Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA 77:2214–2218

    PubMed  CAS  Google Scholar 

  • Fogelman AM, Van Lenten BJ, Warden C, Haberland ME, Edwards PA (1988) Macrophage lipoprotein receptors. J Cell Sci Suppl 9:135–149

    PubMed  CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of particle size in mono-dispersed gold solutions. Nature 241:20–22

    CAS  Google Scholar 

  • Fritz KE, Augustyn JM, Jarmolych J, Daoud AS (1981) Sequential study of biochemical changes during regression of swine aortic atherosclerotic lesions. Arch Pathol Lab Med 105:240–246

    PubMed  CAS  Google Scholar 

  • Gerrity RG (1981a) The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 103:181–190

    CAS  Google Scholar 

  • Gerrity RG (1981b) The role of the monocyte in atherogenesis. II. Migration of foam cells from atherosclerotic lesions. Am J Pathol 103:191–200

    CAS  Google Scholar 

  • Gerrity RG, Naito HK (1980) Lipid clearance from fatty streak lesions by foam cell migration. Artery 8:215–219

    PubMed  CAS  Google Scholar 

  • Glomset JA (1968) The plasma lecithin:cholesterol acyltransferase reaction. J Lipid Res 9:155–167

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1974) Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem 249:5153–5162

    PubMed  CAS  Google Scholar 

  • Gooldstein JL, Brown MS (1977a) Atherosclerosis:the low-density lipoprotein receptor hypothesis. Metabolism 26:1257–1265

    Google Scholar 

  • Goldstein JL, Brown MS (1977b) The low-density lipoprotein pathway and its relation to atherosclerosis. Ann Rev Biochem 46:897–930

    CAS  Google Scholar 

  • Goldstein JL, Brown MS (1979) The LDL receptor locus and the genetics of familial hypercholesterolemia. Ann Rev Genet 13:259–289

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1983) Familial hypercholesterolemia. In: Stanbury JB, Wyngarden JB, Fredrickson DS (eds) The metabolic basis of inherited disease, McGraw-Hill, New York, pp 672–712

    Google Scholar 

  • Goldstein JL, Anderson RGW, Brown MS (1979a) Coated pits, coated vesicles and receptor-mediated endocytosis. Nature 279:679–685

    CAS  Google Scholar 

  • Goldstein JL, Ho YK, Basu SK, Brown MS (1979b) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 76:333–337

    CAS  Google Scholar 

  • Goldstein JL, Ho YK, Brown MS, Innerarity TL, Mahley RW (1980) Cholesteryl-ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine ß-very low density lipoprotein. J Biol Chem 258:1839–1848

    Google Scholar 

  • Goldstein JL, Brown MS, Anderson RGW, Russel DW, Schneider WJ (1985) Receptor-mediated endocytosis:concepts merging from the LDL receptor system. Ann Rev Cell Biol 1:1–39

    PubMed  CAS  Google Scholar 

  • Gordon S (1988) Macrophage plasma membrane receptors:structure and function, J. Cell Sci Suppl 9:1–211

    PubMed  CAS  Google Scholar 

  • Gordon S, Perry VH, Rabinowitz S, Chung L-P, Rosen H (1988) Plasma membrane receptors of the mononuclear phagocyte system. J Cell Sci Suppl 9:1–26

    PubMed  CAS  Google Scholar 

  • Haberland ME, Fong D, Cheng L (1988) Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 241:215–218

    PubMed  CAS  Google Scholar 

  • Hajjar DP (1991) Viral pathogenesis of atherosclerosis:impact of molecular mimicry and viral genes. Am J Pathol 139:1195–1211

    PubMed  CAS  Google Scholar 

  • Handley DA (1989a) Methods for synthesis of colloidal gold. In: Hayat MA (ed) Colloidal gold:principles, methods and applications, vol 1. Academic, New York, pp 13–32

    Google Scholar 

  • Handley DA (1989b) The development and application of colloidal gold as a microscopic probe. In: Hayat MA (ed) Colloidal gold:principles, methods and applications, vol 1. Academic, New York, pp 1–12

    Google Scholar 

  • Harrach B, Robenek H (1990) Polyclonal antibodies against formaldehyde-modified apoliproprotein A-I. An approach to circumventing fixation-induced loss of antigenicity in immunocytochemistry. Arteriosclerosis 10:564–576

    PubMed  CAS  Google Scholar 

  • Heinecke JW, Snits AG, Aviram M, Chait A (1991) Phagocytosis of lipase-aggregate low density lipoprotein promotes macrophage foam cell formation:sequential morphological and biochemical events. Arteriosclerosis Thromb 11:1643–1651

    CAS  Google Scholar 

  • Henson DA, St. Clair RW, Lewis JC (1989) ß-VLDL and acetylated-LDL binding to pigeon monocyte macrophages. Atherosclerosis 78:47–60

    PubMed  CAS  Google Scholar 

  • Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK (1988) Surface location and high affinity for calcium of a 500 kD liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J 7:4119–4127

    PubMed  CAS  Google Scholar 

  • Herz J, Kowal RC, Goldstein JL, Brown MS (1990) Proteolytic processing of the 600 kd low density lipoprotein receptor-related protein (LRP) occurs in a trans-Golgi compartment. EMBO J 9:1769–1776

    PubMed  CAS  Google Scholar 

  • Ho YK, Brown MS, Goldstein JL (1980) Hydrolysis and excretion of cytoplasmic cholesteryl esters by macrophages:stimulation by high density lipoproteins and other agents. J Lipid Res 21:391–398

    PubMed  CAS  Google Scholar 

  • Hobbs HH, Russel DW, Brown MS, Goldstein JL (1990) The LDL receptor locus in familial hypercholesterolemia:mutational analysis of a membrane protein. Ann Rev Genet 24:133–170

    PubMed  CAS  Google Scholar 

  • Hobot JA (1989) Lowicryls and low temperature embedding for coloidal gold methods. In: Hayat MA (ed) Colloidal gold:principles methods and applications, vol 2. Academic, New York, pp 75–115

    Google Scholar 

  • Hoeg JM, Demosky SJ Jr, Edge SB, Gregg RE, Osborne JC JR, Brewer HB JR (1985) Characterization of a human hepatic receptor for high density lipoproteins. Arteriosclerosis 5:228–237

    PubMed  CAS  Google Scholar 

  • Hoff HF, Pepin JM, Morton RE (1991) Modified low density lipoprotein isolated from atherosclerotic lesions does not cause lipid accumulation in aortic smooth muscle cells. J Lipid Res 32:115–124

    PubMed  CAS  Google Scholar 

  • Holund B, Clausen PP, Clemmensen I (1981) The influence of fixation and tissue preparation on the immunohistochemical demonstration of fibronectin in human tissues. Histochemistry 72:291–299

    PubMed  CAS  Google Scholar 

  • Huff MW, Evans AJ, Sawyez CG, Wolfe BM, Nestel PJ (1991) Cholesterol accumulation in J774 macrophages induced by triglyceride-rich lipoproteins. Comparison of very low density lipoprotein in subjects with type II, IV and V hyperlipoproteinemias. Arteriosclerosis Thromb 11:221–233

    CAS  Google Scholar 

  • Hurt E, Camejo G (1987) Effect of arterial proteoglycans on the interaction of LDL with human monocyte-derived macrophages. Atherosclerosis 67:115–126

    PubMed  CAS  Google Scholar 

  • Innerarity TL, Arnold KS, Weisgraber KH, Mahley RW (1986) Apolipoprotein E is the determinant that mediates the receptor uptake of beta-very low density lopoproteins by mouse macrophages. Arteriosclerosis 6:114–122

    PubMed  CAS  Google Scholar 

  • Jaakkola O, Ylä-Herttuala S, Särkioja T, Nikkari T (1989) Macrophage foam cells from human aortic fatty streaks take up ß-VLDL and acetylated LDL in primary culture. Atherosclerosis 79:173–182

    PubMed  CAS  Google Scholar 

  • Jones EY, Stuart DI (1990) The structure of tumour necrosis factor—implications for biological function. J Cell Sci Suppl 13:11–18

    PubMed  CAS  Google Scholar 

  • Joris I, Zand T, Nunnari JJ, Krolikowski FJ, Majno G (1983) Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 113:341–358

    PubMed  CAS  Google Scholar 

  • Kargacin GJ, Cooke PH, Abramson SB, Fay FS (1989) Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells. J Cell Physiol 108:1465–1475

    CAS  Google Scholar 

  • Klurfeld DM (1985) Identification of foam cells in human atherosclerotic lesions as macrophages using monoclonal antibodies. Arch Pathol Lab Med 109:445–449

    PubMed  CAS  Google Scholar 

  • Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains a-helical and collagen-like coiled coils. Nature 343:531–535

    PubMed  CAS  Google Scholar 

  • Law SKA (1988) C3 receptors on macrophages. J Cell Sci Suppl 9:67–97

    PubMed  CAS  Google Scholar 

  • Libby P, Hansson GK (1991) Involvement of the immune system in human atherogenesis:current knowledge and unanswered questions. Lab Invest 64:5–15

    PubMed  CAS  Google Scholar 

  • Luc G, Fruchart J-G (1991) Oxidation of lipoproteins and atherosclerosis. Am Clin Nutr 53:206–209

    Google Scholar 

  • Mahley RW, Innerarity TL (1983) Lipoprotein receptors and cholesterol homeostasis. Biochim Biophys Acta 737:197–222

    PubMed  CAS  Google Scholar 

  • Massagué J (1990) The transforming growth factor family. An Rev Cell Biol 6:597–641

    Google Scholar 

  • Massmann J (1979) Mononuclear cell infiltration of the aortic intima in domestic swine. Exp Pathol 17:110–112

    CAS  Google Scholar 

  • McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    PubMed  CAS  Google Scholar 

  • Mellman I, Koch T, Healey G, et al. (1988) Structure and function of Fc receptors on macrophages and lymphocytes. J Cell Sci Suppl 9:45–65

    PubMed  CAS  Google Scholar 

  • Meloan SN, Barton BP, Puchtler H, Waldrop ES, Hobbs JL (1984) Effects of formaldehyde and methacarn fixation on prekeratin. Georgia J Sci 42:31

    Google Scholar 

  • Minor LK, Glick JM, Rothblat GH (1986) Smooth muscle cells in culture:uptake of artificial lipid inclusions. Arteriosclerosis 6:523a

    Google Scholar 

  • Moore LK, Beyer EC, Burt JM (1991) Characterization of gap junction channels in A7r5 vascular smooth muscle cells. Am J Physiol Cell Physiol 260:C975–0981

    CAS  Google Scholar 

  • Mühlpfordt H (1982) Preparation of colloidal gold particles using tannic acid as an additional reducing agent. Experientia 38:1127–1128

    Google Scholar 

  • Munro JM, Cotran RW (1988) Biology of disease. The pathogenesis of atherosclerosis:atherogenesis and inflammation. Lab Invest 58:249–261

    PubMed  CAS  Google Scholar 

  • Murakami M, Horiuchi S, Takata K, Morino Y (1987) Distinction in the mode of receptor-mediated endocytosis between high density lipoprotein and acetylated high density lipoprotein:evidence for high density lipoprotein receptor-mediated cholesterol transfer. J Biochem 101:729–749

    PubMed  CAS  Google Scholar 

  • Nagano Y, Arai H, Kita T (1991) High density lipoprotein loses its effect to stimulate efflux of cholesterol from foam cells after oxidative modification. Proc Natl Acad Sci USA 88:6457–6461

    PubMed  CAS  Google Scholar 

  • Nakai T, Otto PS, Kennedy DL, Whayne FF Jr (1976) Rat high density lipoprotein HDL3 uptake and catabolism by isolated rat liver parenchymal cells. J Biol Chem 251:4914

    PubMed  CAS  Google Scholar 

  • Nermut MV (1989) Strategy and tactics in electron microscopy of cell surfaces. Electron Microsc Rev 2:171–196

    PubMed  CAS  Google Scholar 

  • Newman GR, Hobot JA (1989) Role of tissue processing in colloidal gold methods. In: Hayat MA (ed) Colloidal gold:principles, methods and applications, vol 2. Academic, New York, pp 33–73

    Google Scholar 

  • Nicol A, Nermut MV, Doeinck A, Robenek H, Wiegand C, Jockusch BM (1987) Visualization of cytoskeletal elements at the ventral plasma membrane of fibroblasts by gold immunolabeling. J Histochem Cytochem 35:499–506

    PubMed  CAS  Google Scholar 

  • Niendorf A, Rath M, Wolf K, Peters H, Arps U, Beisiegel U, Dietel M (1990) Morphological detection and quantification of lipoprotein (a) deposition in atheromatous lesions of human aorta and coronary arteries. Virch Arch [A] 417:105–111

    CAS  Google Scholar 

  • Nowicka G, Brüning T, Böttcher A, Kahl G, Schmitz G (1990) The macrophage interaction of HDL subclasses separated by free flow isotachophoresis. J Lipid Res 31:1947–1963

    PubMed  CAS  Google Scholar 

  • Palinski W, Rosenfeld ME, Ylä-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D, Witztum JL (1989) Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 86:1372–1376

    PubMed  CAS  Google Scholar 

  • Parthasarathy S (1987) Oxidation of low-density lipoprotein by thiol compounds leads to its recognition by the acityl LDL receptor. Biochim Biophys Acta 917:337–340

    PubMed  CAS  Google Scholar 

  • Parthasarathy S, Printz DJ, Boyd D, Joy L, Steinberg D (1986) Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis 6:505–510

    PubMed  CAS  Google Scholar 

  • Pataki M, Lusztig G, Robenek H (1992) Reversibility of oxidized LDL-induced migration inhibition in macrophage-derived foam cells in vitro. A mechanism for the regression of atherosclerosis? Arteriosclerosis Thromb 12:936–944

    CAS  Google Scholar 

  • Pathak RK, Merkle RK, Cummings RD, Goldstein JL, Brown MS, Anderson RGW (1988) Immunocytochemical localization of mutant low density lipoprotein receptors that fail to reach the Golgi complex. J Cell Physiol 106:1831–1841

    CAS  Google Scholar 

  • Pathak RK, Yokode M, Hammer RE, Hofmann SL, Brown MS, Goldstein JL, Anderson RGW (1990) Tissue-specific sorting of the human LDL receptor in polarized epithelia of transgenic mice. J Cell Physiol 111:347–359

    CAS  Google Scholar 

  • Penn A, Garte SJ, WArren L, Nesta D, Mindich B (1986) Transforming gene in human atherosclerotic plaque DNA. Proc Natl Acad Sci USA 83:7951–7955

    PubMed  CAS  Google Scholar 

  • Pinto da Silva P, Kan FWK (1984) Label-fracture:a method for high resolution labeling of cell surfaces. J Cell Physiol 99:1156–1161

    Google Scholar 

  • Polacek D, Byrne RE, Scanu AM (1989) Modification of low density lipoproteins by polymorphonuclear cell elastase leads to enhanced uptake by human monocyte-derived macrophages via the low density lipoprotein receptor pathway. J Lipid Res 29:797–808

    Google Scholar 

  • Ravetch JV, Kinet J-P (1991) Fc receptors. Annu Rev Immunol 9:457–492

    CAS  Google Scholar 

  • Rifici VA, Eder HA (1984) A hepatocyte receptor for high-density lipoproteins specific for apolipoprotein A-I. J Biol Chem 259:13814–13818

    PubMed  CAS  Google Scholar 

  • Robenek H (1989a) Topography and internalization of cell surface receptors as analyzed by affinity-and immunolabeling combined with surface replication and ultrathin sectioning techniques. In: Plattner H (ed) Electron microscopy of subcellular dynamics. CRC, Boca Raton, pp 141–163

    Google Scholar 

  • Robenek H (1989b) Distribution and mobility of receptors in the plasma membrane. In: Hui SW (ed) Freeze-fracture studies of membranes. CRC, Boca Raton, pp 61–86

    Google Scholar 

  • Robenek H, Schmitz G (1985) Receptor domains in the plasma membrane of cultured mouse peritoneal macrophages. Eur J Cell Biol 39:77–85

    PubMed  CAS  Google Scholar 

  • Robenek H, Schmitz G (1988) Ca + + antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. II. Characterization of intracellular morphological changes. Arteriosclerosis 8:57–67

    PubMed  CAS  Google Scholar 

  • Robenek H, Schmitz G (1991) Abnormal processing of Golgi elements and lysosomes in Tangier disease. Arteriosclerosis Thromb 11:1007–1020

    CAS  Google Scholar 

  • Robenek H, Rassat J, Hesz A, Grünwald J (1982) A correlative study on the topographical distribution of the receptors for low density lipoprotein (LDL) conjugated to colloidal gold in cultured human skin fibroblasts employing thin section, freeze-fracture, deep-etching, and surface replication techniques. Eur J Cell Biol 27:242–250

    PubMed  CAS  Google Scholar 

  • Robenek H, Schmitz G, Assmann G (1984) Topography and dynamics of receptors for acetylated and malondialdehyde-modified low-density lipoprotein in the plasma membrane of mouse peritoneal macrophages as visualized by colloidal gold in conjunction with surface replicas. J Histochem Cytochem 32:1017–1027

    PubMed  CAS  Google Scholar 

  • Robenek H, Schmitz G, Greveti H (1987) Cell surface distribution and intracellular fate of human ß-very low density lipoprotein in cultured peritoneal mouse macrophages:cytochemical and immunocytochemical study. Eur J Cell Biol 43:110–120

    PubMed  CAS  Google Scholar 

  • Robenek H, Harrach B, Severs NJ (1991) Display of low density lipoprotein receptors is clustered, not dispersed, in fibroblast and hepatocyte plasma membranes. Arteriosclerosis Thromb 11:261–271

    CAS  Google Scholar 

  • Rohrer L, Freeman M, Kodama T, Penman M, Krieger M (1990) Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature 343:570–572

    PubMed  CAS  Google Scholar 

  • Rosenfeld ME, Palinski W, Ylä-Herttuala S, Butler S, Witztum JL (1990) Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 10:336

    PubMed  CAS  Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis—an update. N Engl J Med 314:488–500

    PubMed  CAS  Google Scholar 

  • Ross R, Masuda J, Raines EW, et al. (1990) Localization of PDGF-ß protein in macrophages in all phases of atherogenesis. Science 248:1009–1012

    PubMed  CAS  Google Scholar 

  • Roth J (1982) The protein A-gold (pAg) technique—a qualitative and quantitative approach for antigen localization on thin sections. In: Bullock GP, Petrusz P (eds) Techniques in immunocytochemistry, vol 1. Academic, London, pp 107–133

    Google Scholar 

  • Sanan DA, Anderson RGW (1991) Simultaneous visualization of LDL receptor distribution and clathrin lattices on membranes torn from the upper surface of cultured cells. J Histochem Cytochem 39:1017

    PubMed  CAS  Google Scholar 

  • Sanan DA, Van der Westhuyzen DR, Gevers W, Coetzee GA (1987) The surface distribution of low density lipoprotein receptors on cultured fibroblasts and endothelial cells. Histochemistry 86:517–523

    PubMed  CAS  Google Scholar 

  • Sanan DA, Van der Westhuyzen DR, Gevers W, Coetzee GA (1989) Early appearance of dispersed low density lipoprotein receptors on the fibroblast surface during recycling. Eur J Cell Biol 48:327–336

    PubMed  CAS  Google Scholar 

  • Schmitz G, Robenek H (1989) Significance of the interaction between lipoprotein subfractions and macrophages for reverse cholesterol transport. In: Klör HU (ed) Recent developments in lipid and lipoprotein research. Lipoprotein subfractions omega-3 fatty acids. Springer, Berlin Heidelberg New York, pp 82–87

    Google Scholar 

  • Schmitz G, Assmann G, Robenek H, Brennhausen B (1985a) Tangier disease:a disorder of intracellular membrane traffic. Proc Natl Acad Sci USA 82:6305–6309

    CAS  Google Scholar 

  • Schmitz G, Niemann R, Brennhausen B, Krause R, Assmann G (1985b) Regulation of high density lipoprotein receptors in cultured macrophages:role of acyl CoA:cholesterol acyltransferase. EMBO J 4:2773–2779

    CAS  Google Scholar 

  • Schmitz G, Robenek H, Lohmann U, Assmann G (1985c) Interaction of high density lipoproteins with cholesteryl ester-laden macrophages:biochemical and morphological characterization of cell surface receptor binding, endocytosis and resecretion of high density lipoproteins by macrophages. EMBO J 4:613–622

    CAS  Google Scholar 

  • Schmitz G, Robenek H, Assmann G (1987) Role of the high density lipoprotein-receptor cycle in macrophage-cholesterol metabolism. In: Gotto A (ed) Atherosclerosis reviews. Raven, New York, pp 95–107

    Google Scholar 

  • Schmitz G, Robenek H, Beuck M, Krause R, Schurek A, Niemann R (1988) Ca++ antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. I Characterization of intracellular lipid metabolism. Arteriosclerosis 8:46–56

    PubMed  CAS  Google Scholar 

  • Schmitz G, Brennhausen B, Robenek H (1989) Regulation of macrophage cholesterol homeostasis. In: Steinmetz A, Kaffarnik H, Schneider J (eds) Recent developments in lipid and lipoprotein research. Cholesterol transport systems and their relation to atherosclerosis. Springer, Berlin Heidelberg New York, pp 22–31

    Google Scholar 

  • Schmitz G, Beuck M, Fischer H, Robenek H (1990a) Regulation of phospholipid biosynthesis during cholesterol influx and high density lipoprotein-mediated cholesterol efflux in macrophages. J Lipid Res 31:1741–1752

    CAS  Google Scholar 

  • Schmitz G, Brüning E, Williamson E, Nowicka G (1990b) The role of HDL in reverse cholesterol transport and its disturbances in Tangier disease and HDL deficiency with xanthomas. Eur Heart J 11 [Suppl E]:197–211

    CAS  Google Scholar 

  • Schmitz G, Fisher H, Beuck M, Hoecker K-P, Robenek H (1990c) Dysregulation of phospholipids synthesis in Tangier monocyte-derived macrophages. Arteriosclerosis 10:1010–1019

    CAS  Google Scholar 

  • Schneider WJ, Beisiegel U, Goldstein JL, Brown MS (1982) Purification of the low density lipoprotein receptor, an acidic glycoprotein of 164,000 molecular weight. J Biol Chem 257:2664–2673

    PubMed  CAS  Google Scholar 

  • Scott J (1989) Thrombogenesis linked to atherogenesis at last? Nature 341:22–23

    PubMed  CAS  Google Scholar 

  • Semich R, Robenek H (1990) Organization of the cytoskeleton and the focal contacts of bovine aortic endothelial cells cultured on type I and III collagen. J Histochem Cytochem 38:59–67

    PubMed  CAS  Google Scholar 

  • Semich R, Gerke V, Robenek H, Weber K (1989) The p36 substrate of pp60 src kinase is located at the cytoplasmic surface of the plasma membrane of fibroblasts; an immunoelectron microscopic analysis. Eur J Cell Biol 50:313–323

    PubMed  CAS  Google Scholar 

  • Severs NJ (1989) Freeze-fracture cytochemistry:review of methods. J Electron Microsc Tech 13:175–203

    PubMed  CAS  Google Scholar 

  • Severs NJ, Robenek H (1983) Detection of microdomains in biomembranes:an appraisal of recent developments in freeze-fracture cytochemistry. Biochim Biophys Acta 737:373–408

    PubMed  CAS  Google Scholar 

  • Small DM (1988) Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arteriosclerosis 8:103–129

    PubMed  CAS  Google Scholar 

  • Soltys PA, Portman OW, O’Malley JP (1982) Binding properties of high density lipoprotein subfractions and low-density lipoproteins to rabbit hepatocytes. Biochim Biophys Acta 713:300

    PubMed  CAS  Google Scholar 

  • Sparrow CP, Parthasarathy S, Steinberg D (1989) A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J Biol Chem 264:2599–2604

    PubMed  CAS  Google Scholar 

  • Stary HC (1987) Macrophages, macrophage foam cells, and accentric intimai thickening in the coronary arteries of young children. Atherosclerosis 64:91–108

    PubMed  CAS  Google Scholar 

  • Stary H (1989) Evolutional progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 9 [Suppl 1]:19–32

    Google Scholar 

  • Stary HC, Strong JP, Eggen DA (1980) Differences in the degradation rate of intracellular lipid droplets in the intimai smooth muscle cells and macrophages of regressing atherosclerotic lesions of primates. In: Gotto AM, Smith LC, Allen B (eds) Atherosclerosis V. Springer, Berlin Heidelberg New York, pp 753–756

    Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JC (1989) Beyond cholesterol:modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    PubMed  CAS  Google Scholar 

  • Tokuyasu KT (1980) Immunocytochemistry on ultrathin frozen sections. Histochem J 12:381–403

    PubMed  CAS  Google Scholar 

  • Travo P, Weber K, Osborn M (1982) co-existence of vimentin and desmin type intermediate filaments in a subpopulation of adult rat vascular smooth muscle cells growing in primary culture. Exp Cell Res 139:87–94

    PubMed  CAS  Google Scholar 

  • Tucker CF, Catsulis C, Strong JP, Eggen DA (1971) Regression of early cholesterol-induced aortic lesions in rhesus monkeys. Am J Pathol 65:493–502

    PubMed  CAS  Google Scholar 

  • Van Bergen en Honegouwen PMP (1989) Immunogold labelling of ultrathin crysections. In: Hayat MA (ed) Colloidal gold:principles, methods and applications, vol 1. Academic, New York, pp 191–216

    Google Scholar 

  • Van der Westhuyzen DR, Gevers W, Coetzee GA (1980) Cathepsin-D-dependent initiation of the hydrolysis by lysosomal enzymes of apoprotein B from low-density lipoproteins. Eur J Biochem 112:153–160

    PubMed  Google Scholar 

  • Van Lenten BJ, Fogelman AM (1990) Processing of lipoproteins in human monocyte-macrophages. J Lipid Res 31:1455–1466

    PubMed  Google Scholar 

  • Vijayagopal P, Srinivasan SR, Jones KM, Radhakrishnamurthy B, Berenson GS (1985) Complexes of low-density lipoproteins and arterial proteoglycan aggregates promote cholesteryl ester accumulation in mouse macrophages. Biochim Biophys Acta 837:257–267

    Google Scholar 

  • Vollmer E, Roessner A, Bosse A, et al. (1991) Immunohistochemical double labeling of macrophages, smooth muscle cells and apolipoprotein E in the atherosclerotic plaque. Pathol Res Pract 187:184

    CAS  Google Scholar 

  • Völker W, Frick B, Robenek H (1985) A simple device for low temperature polymerization of Lowicryl K4M resin. J Microsc 138:91–93

    Google Scholar 

  • Watanabe T, Hirata M, Yoshikawa, Nagafuchi Y, Toyoshima H (1985) Role of macrophages in atherosclerosis. Lab Invest 53:80–90

    PubMed  CAS  Google Scholar 

  • Watanabe T, Tokunaga O, Fan J, Shimokama T (1989) Atherosclerosis and macrophages. Acta Pathol Jpn 39:473–486

    PubMed  CAS  Google Scholar 

  • Wissler RW, Vesselinovitch D (1990) Can atherosclerotic plaques regress? Anatomic and biochemical evidence from nonhuman animal models. Am J Cardiol 65:33–40

    Google Scholar 

  • Wofsy C, Echavarria-Heras H, Goldstein B (1985) Effect of preferential insertion of LDL receptors near coated pits. Cell Biophys 7:197–204

    PubMed  CAS  Google Scholar 

  • Wolfbauer G, Glick JM, Minor LK, Rothblat GH (1986) Development of the smooth muscle foam cell:uptake of macrophage lipid inclusions. Proc Natl Acad Sci USA 83:7760–7764

    PubMed  CAS  Google Scholar 

  • Wolpe SD, Cerami A (1989) Macrophage inflammatory proteins 1 and 2:members of a novel superfamily of cytokines. FASEB J 3:2565

    PubMed  CAS  Google Scholar 

  • Yin HL, Hartwig JH (1988) The structure of the macrophage actin skeleton. J Cell Sci Suppl 9:169–184

    PubMed  CAS  Google Scholar 

  • Zannis VJ, Kurnit DM, Breslow JL (1982) Hepatic apo-A-I and intestinal apo-A-I are synthesized in precursor isoprotein forms by organ cultures of human fetal tissues. J Biol Chem 257:536–544

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robenek, H., Severs, N.J. (1993). Lipoprotein Receptors on Macrophages and Smooth Muscle Cells. In: Roessner, A., Vollmer, E. (eds) Recent Progress in Atherosclerosis Research. Current Topics in Pathology, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76849-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76849-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76851-4

  • Online ISBN: 978-3-642-76849-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics