Skip to main content

Pathobiochemical Changes of the Arterial Wall at the Inception of Atherosclerosis

  • Chapter
Recent Progress in Atherosclerosis Research

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 87))

Abstract

The pathogenesis and molecular mechanism of atherosclerosis are still an intriguing and challenging puzzle for cardiovascular research. The potential therapeutic implications of decoding this disease fully justify the efforts to understand the subtle processes which may underlie atherogenesis. Present knowledge does not allow a comprehensive picture of the multiplicity of factors and the sequence of molecular and cellular events which lead to the alterations of the artery wall that generate myocardial and cerebral infarction. Valuable contributions from several laboratories, especially in the last decade, have led to several hypotheses regarding the mechanisms by which elevated serum cholesterol induces atherosclerosis. Among these theories, particularly seminal have been the revised “response-to-injury” (Ross 1986) and the “lipid infiltration” hypotheses, the latter focusing primarily on the role of oxidized low-density lipoprotein (LDL) (Steinberg et al. 1989). Important contributions have also emerged from the laboratories of A. Fogelman, R. Mahley, and others, not to mention the pioneering work on LDL metabolism and LDL receptors, by M. Brown and J. Goldstein. However, focusing the interpretation on a single pathogenic factor can only inadvertently obscure the data accumulate on other lines of investigation and delay the formulation of a coherent theory of atherosclerosis based on generally accepted factual evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

apo A-I:

apolipoprotein A-I

apo B:

apolipoprotein B

apo E:

apolipoprotein E

ALp:

aggregated lipoproteins

CETP:

cholesteryl ester transfer protein

CSPG:

chondroitin sulfate-proteoglycan

ECs:

endothelial cells

EDRF:

endothelial-derived relaxing factor

ELAM:

endothelial leukocyte adhesion molecules

ELs:

extracellular liposomes

FLp:

fused lipoproteins

FN:

fibronectin

HDL:

high-density lipoproteins

ICAM:

intercellular adhesion molecules

IDL:

intermediate-density lipoproteins

LDL:

low-density lipoproteins

Lp(a):

lipoprotein a

MCP-1:

monocyte chemotactic protein 1

MLp:

monomeric lipoproteins

MM-LDL:

minimally modified LDL

MRLp:

modified and reassembled lipoproteins

OTO:

osmium-thiocarbohydrazideosmium

PAGE:

polyacrylamide gel electrophoresis

TA-PDA:

tannic acid-paraphenylenediamine

VCAM:

vascular cell adhesion molecules

VLDL:

very low-density lipoprotein

VLp:

vesiculated lipoproteitis

WHHL:

Watanabe heritable hyperlipidemic

References

  • Adams CWM, Morgan RS (1967) The effect of saturated and polyunsaturated lecithins on the resorption of 4-14C-cholesterol from subcutaneous implants. J Pathol Bacteriol 94:73–76

    PubMed  CAS  Google Scholar 

  • Amanuma K, Kanaseki T, Ikeuchi Y, Ohkuma S, Takano T (1986) Studies on fine structure and location of lipids in quick-freeze replicas of atherosclerosis aorta of WHHL rabbits. Virchows Arch [A] 410:231–238

    CAS  Google Scholar 

  • Agel NM, Ball RY, Waldmann H, Mitchinson MJ (1985) Identification of macrophages and smooth muscle cells in human atherosclerosis using monoclonal antibodies. J Pathol 146:197–205

    Google Scholar 

  • Avogaro P, Cazzolato G, Bittolo-Bon G (1991) Some questions concerning a small, more electronegative LDL circulating in human plasma. Atherosclerosis 91:163–171

    PubMed  CAS  Google Scholar 

  • Berenson GS, Radhakrishnamurthy B, Srinivasan SR, Vijayagopal P, Dalferes ER (1985) Proteo-glycans and potential mechanisms related to atherosclerosis. Ann NY Acad Sci 454:69–78

    PubMed  CAS  Google Scholar 

  • Berliner JA, Territo MC, Sevanian A, et al. (1990) Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 85:1260–1266

    PubMed  CAS  Google Scholar 

  • Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA Jr (1987) Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA 84:9238–9242

    PubMed  CAS  Google Scholar 

  • Bini A, Fenoglio JJ Jr, Mesa-Tejada R, Kudryk B, Kaplan KL (1989) Identification and distribution of fibrinogen, fibrin and fibrin(ogen) degradation products in atherosclerosis. Use monoclonal antibodies. Arteriosclerosis 9:109–121

    PubMed  CAS  Google Scholar 

  • Block ER (1991) Hydrogen peroxide alters the physical state and function of the plasma membrane of pulmonary artery endothelial cells. J Cell Physiol 146:362–369

    PubMed  CAS  Google Scholar 

  • Bocan TMA, Brown SA, Guyton JR (1988) Human aortic fibrolipid lesions. Immunochemical localization of apolipoprotein B and apolipoprotein A. Arteriosclerosis 8:499–508

    PubMed  CAS  Google Scholar 

  • Borsum T, Henriksen T, Reisvaag A (1985) Oxidized low density lipoprotein can reduce the pinocytic activity in cultured human endothelial cells as measured by cellular uptake of [14C] sucrose. Atherosclerosis 58:81–96

    PubMed  CAS  Google Scholar 

  • Bratzler RL, Chisolm GM, Colton CK, Smith KA, Lees RS (1977) The distribution of labeled low-density lipoproteins across the rabbit thoracic aorta in vivo. Atherosclerosis 28:289–307

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL, Krieger M, Ho YK, Anderson RGW (1979) Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol 82:597–613

    PubMed  CAS  Google Scholar 

  • Camejo G, Olofsson SO, Lopez F, Carlsson P, Bondjers G (1988) Identification of apo B-100 segments mediating the interaction of low density lipoproteins with arterial proteoglycans. Arteriosclerosis 8:368–377

    PubMed  CAS  Google Scholar 

  • Camejo G, Hurt-Camejo E, Rosengren B, Wiklund O, Lopez F, Bondjers G (1991) Modification of copper-catalyzed of low density lipoprotein by proteoglycans and glycosaminoglycans. J Lipid Res 32:1983–1991

    PubMed  CAS  Google Scholar 

  • Carew TE, Pittman RC, Marchaud ER, Steinberg D (1984) Measurement in vivo of irreversible degradation of low density lipoprotein in the rabbit aorta. Arteriosclerosis 4:214–224

    PubMed  CAS  Google Scholar 

  • Cathcart MK, Morel DW, Chisolm GM (1985) Monocytes and neutrophils oxidize low density lipoproteins making it cytotoxic. J Leukocyte Biol 38:341–350

    PubMed  CAS  Google Scholar 

  • Cavender DE, Edelbaum D, Ziff M (1989) Endothelial cell activation induced by tumor necrosis factor and lymphotoxin. Am J Pathol 134:551–560

    PubMed  CAS  Google Scholar 

  • Chao FF, Blanchette-Mackie J, Chen Y-J, et al. (1990) Characterization of two unique cholesterol-rich lipid particles isolated from human atherosclerotic lesions. Am J Pathol 136:169–179

    PubMed  CAS  Google Scholar 

  • Cherchi GM, Coinu R, Demuro P, et al. (1990) Structural and functional modifications of human aorta proteoglycans in atherosclerosis. Matrix 10:362–372

    PubMed  CAS  Google Scholar 

  • Clozel M, Kuhn H, Hefti F, Baumgartner HR (1991) Endothelial dysfunction and subendothelial monocyte macrophages in hypertension. Effect of angiotensin converting enzyme inhibition. Hypertension 18:132–141

    PubMed  CAS  Google Scholar 

  • Cotran RS (1987) New roles for the endothelium in inflammation and immunity. Am J Pathol 129:407–413

    PubMed  CAS  Google Scholar 

  • Cotran RS, Pober JS (1988) Endothelial activation:its role in inflammatory and immune reactions. In: Simionescu N, Simionescu M (eds) Endothelial cell biology in health and disease. Plenum, New York, pp 335–347

    Google Scholar 

  • Cotran RS, Gimbrone MA Jr, Bevilacqua MP, Mendrick DL, Pober JS (1986) Induction and detection of a human endothelial activation antigen in vivo. J Exp Med 164:661–666

    PubMed  CAS  Google Scholar 

  • Cotran RS, Kumar V, Robbins SL (1989) Pathologic basis of disease. WB Saunders, Philadelphia, pp 1–38

    Google Scholar 

  • Cushing SD, Berliner JA, Valente AJ, et al. (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 87:5134–5138

    PubMed  CAS  Google Scholar 

  • Cybulski MI, Gimbrone MA Jr (1990) Endothelial cells express a monocyte adhesion molecule during atherogenesis. FASEB J 4:A1135 - A1142

    Google Scholar 

  • Cybulski MI, Gimbrone MA Jr (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–791

    Google Scholar 

  • Cybulski MI, Gimbrone MA Jr (1992) Endothelial leukocyte adhesion molecules in acute inflammation and atherogenesis. In: Simionescu N, Simionescu M (eds) Endothelial cell dysfunctions. Plenum, New York, pp 129–140

    Google Scholar 

  • de Graaf J, Hak-Lemmers HLM, Hectors MPC, Deinacker PNM, Hendrisk JCM, Stalenhoef AFH (1991) Enhanced susceptibility to in vitro oxidation of the dense low density liporpotein subfraction in healthy subjects. Arteriosclerosis Thromb 11:298–306

    Google Scholar 

  • Deliconstantinos G, Tsopanakis C, Karayiannakos P, Skalkeas G (1986) Evidence for the existence of non-esterified cholesterol carried by albumin in rat serum. Atherosclerosis 61:67–75

    PubMed  CAS  Google Scholar 

  • Duane PG, Rice KL, Charbonean DE, King MB, Gilboe DP, Niewoehner DE (1991) Relationship of oxidant-mediated cytotoxicity to phospholipid metabolism in endothelial cells. Am J Respir Cell Mol Biol 4:408–416

    PubMed  CAS  Google Scholar 

  • Ehnholm C, Jauhiainen M, Metso J (1990) Interaction of lipoprotein (a) with fibronectin and its potential role in atherogenesis. Eur Heart J 11 [Suppl E]:190–195

    PubMed  CAS  Google Scholar 

  • Eskenasy M, Mora R, Simionescu N (1984) In vitro study of low density lipoprotein-collagen interaction. Morphol Embryol 30:147–152

    CAS  Google Scholar 

  • Esterbauer H, Jurgens G, Quchenberger O, Koller E (1987) Autoxidation of human low density lipoprotein:loss of polyunsaturated fatty acids and vitamin E, and generation of aldehydes. J Lipid Res 28:495–509

    PubMed  CAS  Google Scholar 

  • Faggiotto A, Ross R (1984) Studies on hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 4:341–356

    PubMed  CAS  Google Scholar 

  • Faggiotto A, Ross R, Harker L (1984) Studies on hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 4:323–340

    PubMed  CAS  Google Scholar 

  • Falcone DJ, Mated N, Shio H, Minick CR, Fowler SD (1984) Lipoprotein-heparin-fibronectindenaturated collagen complexes enhance cholesteryl ester accumulation in macrophages. J Cell Biol 99:1266–1274

    PubMed  CAS  Google Scholar 

  • Filip DA, Nistor A, Bulla A, Radu A, Lupu F, Simionescu M (1987) Cellular events in the development of valvular atherosclerotic lesions induced by experimental hypercholesterolemia. Atherosclerosis 67:199–214

    PubMed  CAS  Google Scholar 

  • Florentin RA, Nam SC, Lee KT, Thomas WA (1969) Increased 3H-thymidine incorporation into endothelial cells of swine fed cholesterol for 3 days. Exp Mol Pathol 10:250–255

    PubMed  CAS  Google Scholar 

  • Frank JS, Fogelman AM (1989) Ultrastructure of intima of WHHL and cholesterol fed rabbit aorta prepared by ultrarapid freezing and freeze etching. J Lipid Res 30:967–978

    PubMed  CAS  Google Scholar 

  • Frei B, Stocker R, Ames BN (1988) Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA 85:9748–9752

    PubMed  CAS  Google Scholar 

  • Ghinea N, Leabu M, Hasu M, Muresan V, Colceag J, Simionescu N (1987) Prelesional events in atherogenesis:changes induced by hypercholesterolemia in the cell surface chemistry of arterial endothelium and blood monocytes in rabbit. J Submicrosc Cytol 19:209–227

    PubMed  CAS  Google Scholar 

  • Gimbrone MA Jr (1989) Endothelial dysfunction and atherosclerosis. J Cardiac Surg 4:180–183

    Google Scholar 

  • Gimbrone MA Jr, Bevilacqua MP (1988) Vascular endothelium:functional modulation at the blood interface. In: Simionescu N, Simionescu M (eds) Endothelial cell biology in health and disease. Plenum, New York, pp 255–273

    Google Scholar 

  • Gordon JL, Pearson JD (1982) Responses of endothelial cells to injury. In: HL Nossel, HJ Vogel (eds) Pathobiology of the endothelial cell. Academic, New York, pp 433–454

    Google Scholar 

  • Gown AM, Tsukada T, Ross R (1986) Human atherosclerosis II Immunohistochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol 125:191–198

    PubMed  CAS  Google Scholar 

  • Guyton JR, Klemp KF (1988) Ultrastructural discrimination of lipid droplets and vesicles in atherosclerosis:value of osmium-thiocarbohydrazide-osmium and tannic acid-paraphenylendiamine technique. J Histochem Cytochem 36:1319–1328

    PubMed  CAS  Google Scholar 

  • Guyton JR, Klemp KF (1989) The lipid-rich core region of human atherosclerotic fibrous plaques. Prevalence of small lipid droplets and vesicles by electron microscopy. Am J Pathol 134:705–717

    PubMed  CAS  Google Scholar 

  • Guyton JR, Bocan TMA, Schifani TA (1985) Quantitative ultrastructural analysis of perifibrous lipid and its association with elastin in nonatherosclerotic human aorta. Arteriosclerosis 5:644–652

    PubMed  CAS  Google Scholar 

  • Guyton JR, Klemp KF, Black BL, Bocan TMA (1990) Extracellular lipid deposition in atherosclerosis. Eur Heart J 11 [Suppl E]:20–28

    PubMed  CAS  Google Scholar 

  • Guyton JR, Klemp KF, Mims MP (1991) Altered ultrastructural morphology of self-aggregated low density lipoproteins:coalescence of lipid domains forming droplets and vesicles. J Lipid Res 32:953–962

    PubMed  CAS  Google Scholar 

  • Haberland ME, Fong D, Cheng L (1988) Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 241:215–218

    PubMed  CAS  Google Scholar 

  • Hajjar DP (1991) Warner-Lambert/Parke-Davis Award lecture. Viral pathogenesis of atherosclerosis. Am J Pathol 139:1195–1211

    PubMed  CAS  Google Scholar 

  • Hajjar DP, Wight TN, Smith SC (1980) Lipid accumulation and ultrastructural change within the aortic wall during early spontaneous atherogenesis. Am J Pathol 100:683–702

    PubMed  CAS  Google Scholar 

  • Hajjar KA, Gavish D, Breslow JL, Nachman RL (1989) Lipoprotein(a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis. Nature 339:303–305

    PubMed  CAS  Google Scholar 

  • Halliwell B (1987) Oxidants and human disease:some new concepts. FASEB J 1:358–364

    PubMed  CAS  Google Scholar 

  • Halliwell B (1988) Albumin—an important extracellular antioxidant? Biochem Pharmacol 37:569–571

    PubMed  CAS  Google Scholar 

  • Hallmann J, Schmidt A, van Bassewitz D-B, Buddecke E (1989) Relationship of sulfated glycosa-minoglycans and cholesterol content in normal and arteriosclerotic human aorta. Arteriosclerosis 9:154–158

    Google Scholar 

  • Hamilton RL, Havel RJ, Kane JP, Blaurock AE, Sata T (1971) Cholestasis:lamellar structure of the abnormal human serum lipoprotein, Science 172:475–478

    PubMed  CAS  Google Scholar 

  • Hammami M, Maume G, Maume BF (1986) Role of albumin for the cholesterol transport and on the steroidogenic pathways in serum—free medium newborn rat adrenocortical cell cultures. Cell Biol Int Rep 10:649–658

    PubMed  CAS  Google Scholar 

  • Hansson GK, Bondjers G (1980) Endothelial proliferation and atherogenesis in rabbits with moderate hypercholesterolemia. Artery 7:316–329

    PubMed  CAS  Google Scholar 

  • Hansson GK, Jonasson L, Seifert PS, Stemme S (1989) Immune mechanisms in atheriosclerosis. Arteriosclerosis 9:567–578

    PubMed  CAS  Google Scholar 

  • Hansson GK, Seifert PS, Olsson G, Bondjers G (1991) Immunohistochemical detection of macrophages and T lymphocytes in atherosclerotic lesions of cholesterol-fed rabbits. Arteriosclerosis Thromb 11:745–750

    CAS  Google Scholar 

  • Healey B (1990) Endothelial cell dysfunction:an emerging endocrinopathy linked to coronary disease. J Am Cell Cardiol 16:357–358

    Google Scholar 

  • Henriksen T, Mahoney EM, Steinberg D (1982) Interactions of plasma lipoproteins with endothelial cells. Ann NY Acad Sci 401:102–116

    PubMed  CAS  Google Scholar 

  • Hoff HF, Cole TB (1991) Macrophage uptake of low density lipoprotein modified by 4-hydroxynonenal. An ultrastructural study. Lab Invest 64:254–264

    PubMed  CAS  Google Scholar 

  • Hoff HF, Gaubatz JW (1982) Isolation, purification and characterization of a lipoprotein containing apo B from the human aorta. Atherosclerosis 42:273–291

    PubMed  CAS  Google Scholar 

  • Hoff HF, Morton RE (1985) Lipoproteins containing apo B extracted from human aortas:structure and function. Ann NY Acad Sci 454:183–194

    PubMed  CAS  Google Scholar 

  • Hoff HF, O’Neil J (1991) Lesion-derived low density lipoprotein and oxidized low density lipoprotein share a lability for aggregation, leading to enhanced macrophage degradation. Arteriosclerosis Thromb 11:1209–1222

    CAS  Google Scholar 

  • Hoff HF, Jackson RL, Mao SJT, Gotto AM Jr (1974) Localization of low density lipoproteins in atherosclerotic lesions from human normolipemics employing a purified fluorescent-labeled antibody. Biochim Biophys Acta 351:407–415

    PubMed  CAS  Google Scholar 

  • Holland YA, Pritchard KA, Rogers NY, Stemerman MB (1988) Perturbation of cultured human endothelial cells by atherogenic levels of low density lipoprotein. Am J Pathol 132:474–478

    PubMed  CAS  Google Scholar 

  • Hollander W, Paddock J, Colombo M (1979) Lipoproteins in human atherosclerotic vessels. Part I. Biochemical properties of arterial low density lipoproteins, very low density lipoproteins and high density lipoproteins. Exp Mol Pathol 30:144–158

    PubMed  CAS  Google Scholar 

  • Hoover GA, McCormick S, Kalant N (1988) Interaction of native and cell-modified low density lipoprotein with collagen gel. Arteriosclerosis 8:525–534

    PubMed  CAS  Google Scholar 

  • Hunter JA, Shahrokh Z, Forte TM, Nichols AV (1982) Aggregation of low density lipoproteins with unilamellar phosphatidylcholine vesicles. Biochem Biophys Res Commun 105:824–834

    Google Scholar 

  • Hurt E, Bondjers G, Camejo G (1990) Interaction of LDL with human arterial proteoglycans stimulates its uptake by human monocyte-derived macrophages. J Lipid Res 31:443–454

    PubMed  CAS  Google Scholar 

  • Hurt-Camejo E, Camejo G, Rosengren B, Lopez F, Wiklund O, Bondjers G (1990) Differential uptake of proteoglycan-selected subfractions of low density lipoprotein by human macrophages. J Lipid Res 31:1387–1398

    PubMed  CAS  Google Scholar 

  • Jensen BA, Holund B, Clemmensen I (1983) Demonstration of fibronectin in normal and injured aorta by an indirect immunoperoxidase technique. Histochemistry 77:395–403

    PubMed  CAS  Google Scholar 

  • Jialal I, Freeman DA, Grundy SM (1991) Varying susceptibility of different low density lipoprotein to oxidative modification. Arteriosclerosis Thromb 11:482–488

    CAS  Google Scholar 

  • Jokinen MP, Clarkson TB, Prichard RW (1985) Recent advances in molecular pathology. Animal models in atherosclerosis research. Exp Mol Pathol 42:1–28

    PubMed  CAS  Google Scholar 

  • Jonasson L, Hohn J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6:131–139

    PubMed  CAS  Google Scholar 

  • Joris I, Zand T, Nunnary JL, Krolikowski FJ, Majno G (1983) Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 113:341–358

    PubMed  CAS  Google Scholar 

  • Joris I, Billingham M-E, Majno G (1984) Human coronary arteries:an ultrastructural search for the early changes of atherosclerosis. Fed Proc 43:710

    Google Scholar 

  • Julien P, Donwar E, Angel A (1981) Lipoprotein composition and transport in the pig and dog cardiac lymphatic system. Circ Res 49:248–254

    PubMed  CAS  Google Scholar 

  • Julien P, Fong B, Angel A (1984) Cardiac and peripheral lymph lipoproteins in dogs fed cholesterol and saturated fat. Arteriosclerosis 4:435–442

    PubMed  CAS  Google Scholar 

  • Katz SS, Small DM (1980) Isolation and partial characterization of the lipid phases of human atherosclerotic plaques. J Biol Chem 255:9553–9758

    Google Scholar 

  • Khoo JC, Miller E, McLoughlin P, Steinberg D (1988) Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis 8:348–358

    PubMed  CAS  Google Scholar 

  • Khoo JC, Miller E, McLoughlin P, Steinberg D (1990) Prevention of low density lipoprotein aggregation by high density lipoprotein or apolipoprotein A-I. J Lipid Res 31:645–652

    PubMed  CAS  Google Scholar 

  • Kim JA, Maxwell K, Hajjar DP, Berliner JA (1991) ß-VLDL increases endothelial cell plasma membrane cholesterol. J Lipid Res 32:1125–1131

    PubMed  CAS  Google Scholar 

  • Klein RL, Rudel LL (1983) Effect of dietary cholesterol level on the composition of thoracic duct lymph lipoproteins isolated from nonhuman primates. J Lipid Res 24:357–367

    PubMed  CAS  Google Scholar 

  • Kostner GM, Bihari-Varga M (1990) Is the atherogenicity of Lp(a) caused by its reactivity with proteoglycans?. Eur Heart J 11 [Suppl E]:184–189

    PubMed  CAS  Google Scholar 

  • Kovanen PT (1990) Atheroma formation:defective control in the intimal round-trip of cholesterol. Eur Heart J 11:238–246

    PubMed  CAS  Google Scholar 

  • Kruth HS (1984) Filipin-positive, oil red O negative particles in atherosclerotic lesions induced by cholesterol feeding. Lab Invest 50:87–98

    PubMed  CAS  Google Scholar 

  • Kumar VV, Malewicz B, Baumann WJ (1989) Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the “wedge” effect. Biophys J 55:789–792

    PubMed  CAS  Google Scholar 

  • Kume N, Arai H, Kawai C, Kita T (1991) Receptors for modified low-density lipoproteins on human endothelial cells:different recognition for acetylated low density lipoprotein and oxidized low density lipoprotein. Biochim Biophys Acta 1091:63–67

    PubMed  CAS  Google Scholar 

  • Lever MJ, Jay MT (1990) Albumin and Cr-EDTA uptake by systemic arteries veins and pulmonary artery of rabbit. Arteriosclerosis 10:551–558

    PubMed  CAS  Google Scholar 

  • Libby P, Hansson GK (1991) Involvement of the immune system in human atherogenesis. current knowledge and unanswered questions. Lab Invest 64:5–15

    PubMed  CAS  Google Scholar 

  • Lin S-J, Jan K-M, Chien S (1990) Role of dying endothelial cells in transendothelial macromolecular transport. Arteriosclerosis 10:703–709

    PubMed  CAS  Google Scholar 

  • Londono J, Bendayan M (1989) Distribution of endogenous albumin across the rat aortic wall as revealed by quantitative immunocytochemistry. Am J Anat 186:407–416

    PubMed  CAS  Google Scholar 

  • Luc G, Fruchart J-C (1991) Oxidation of lipoproteins and atherosclerosis. Am J Clin Nutr 53:2065–209S

    Google Scholar 

  • Lupu F, Danaricu I, Simionescu N (1987) The development of intracellular lipid deposits in the lipid-laden cells of the atherosclerotic lesions:a cytochemical and ultrastructural study. Arteriosclerosis 67:127–142

    CAS  Google Scholar 

  • Mahley RW (1983) Development of accelerated atherosclerosis:concepts derived from cell biology and animal model studies. Arch Pathol Lab Med 107:393–399

    PubMed  CAS  Google Scholar 

  • Majno G, kris J, Zand T (1985) Atherosclerosis:new horizons. Hum Pathol 16:3–5

    PubMed  CAS  Google Scholar 

  • Majno G, Zand T, Nunnari JJ, Kowala MC, Joris I (1988) Intimal response to shear stress, hyper-cholesterolemia and hypertension:studies in the rat aorta. In: Simionescu N, Simionescu M (eds) Endothelial cell biology in health and disease. Plenum, New York, pp 349–367

    Google Scholar 

  • Masuda J, Ross R (1990) Atherogenesis during low level hypercholesterolemia in the nonhuman primate. I. Fatty streak formation. Arteriosclerosis 10:164–177

    PubMed  CAS  Google Scholar 

  • Mazzone T, Lopez C, Bergstraesser L (1987) Modification of very low density lipoproteins leads to macrophage scavenger receptor uptake and cholesteryl ester deposition. Arteriosclerosis 7:191–196

    PubMed  CAS  Google Scholar 

  • McCullagh KG, Balian G (1975) Collagen characterization and cell transformation in human atherosclerosis. Nature 258:73–84

    PubMed  CAS  Google Scholar 

  • Mora R, Lupu F, Simionescu N (1987) Prelesional events in atherogenesis. Colocalization of apolipoprotein B, unesterified cholesterol and extracellular phospholipid liposomes in the aorta of hyperlipidemic rabbit. Atherosclerosis 67:143–154

    PubMed  CAS  Google Scholar 

  • Mora R, Lupu F, Simionescu N (1989) Cytochemical localization of beta-lipoproteins and their compoents in successive stages of hyperlipidemic atherogenesis of rabbit aorta. Atherosclerosis 79:183–195

    PubMed  CAS  Google Scholar 

  • Mora R, Simionescu M, Simionescu N (1990) Purification and partial characterization of extracellular liposomes isolated from the hyperlipidemic rabbit aorta. J Lipid Res 31:1793–1807

    PubMed  CAS  Google Scholar 

  • Morel DW, Hessler JR, Chisolm GM (1983) Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 24:1070–1078

    PubMed  CAS  Google Scholar 

  • Morel DW, Di Corleto PE, Chisolm GM (1984) Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis 4:357–364

    PubMed  CAS  Google Scholar 

  • Morton RE, West GA, Hoff HF (1986) A low density-lipoprotein-sized particle isolated from human atherosclerotic lesions is internalized by macrophages via a non-scavenger receptor mechanism. J Lipid Res 27:1124–1134

    PubMed  CAS  Google Scholar 

  • Murata K, Motayama T, Kotake C (1986) Collagen types in various layers of the human aorta and their changes with the atherosclerotic process. Atherosclerosis 60:251–262

    PubMed  CAS  Google Scholar 

  • Nagelkerke JF, Barto KP, van Berkel TJ (1983) In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer, and parenchymal cells. J Biol Chem 258:12221–12227

    PubMed  CAS  Google Scholar 

  • Nagelkerke JF, Havekes L, van Hinsbergh VWM, van Berke TJC (1984) In vivo catabolism of biologically modified LDL. Arteriosclerosis 4:256–264

    PubMed  CAS  Google Scholar 

  • Niculescu F, Hugo F, Rus HG, Vlaicu R, Bhakdi S (1987) Quantitative evaluation of the terminal C5b-9 complement complex by ELISA in human atherosclerotic arteries. Clin Exp Immunol 69:477–486

    PubMed  CAS  Google Scholar 

  • Nievelstein PFEM, Fogelman AM, Mottino G, Frank JS (1991) Lipid accumulation in rabbit aortic intima two hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arteriosclerosis Thromb 11:1795–1805

    CAS  Google Scholar 

  • Nistor A, Bulla A, Filip DA, Radu A (1987) The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 68:159–173

    PubMed  CAS  Google Scholar 

  • Nordestgaard BG, Tybjaerg-Hansen A, Lewis B (1992) Influx in vivo of low density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits. Roles of plasma concentration, extent of aortic lesion, and lipoprotein particle size as determinants. Arteriosclerosis Thromb 12:6–18

    CAS  Google Scholar 

  • Olgemoller B, Schleicher ED, Schwaabe S, Guretzki H-J, Gerbitz KD (1990) High concentrations of low density lipoprotein basement membrane-associated heparan sulfate proteoglycan in cultured endothelial cells. FEBS Lett 264:37–39

    PubMed  CAS  Google Scholar 

  • Palinski W, Rosenfeld ME, Yla-Herttuala S, et al. (1989) Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 86:1372–1376

    PubMed  CAS  Google Scholar 

  • Parthasarathy S, Steinbrecher VP, Barnett J, Witztum JL, Steinberg D (1985) Essential role phospholipase A activity in endothelial cell-induced modification of low density lipoprotein. Proc Natl Acad Sci USA 82:3000–3004

    PubMed  CAS  Google Scholar 

  • Parthasarathy S, Quinn MT, Schwenke DC, Carew TE, Steinberg D (1989) Oxidative modification of beta-very low density lipoprotein. Potential role in monocyte recruitment and foam cell formation. Arteriosclerosis 9:398–404

    PubMed  CAS  Google Scholar 

  • Pirisino R, DiSimplicio P, Ignesti G, Bianchi G, Barbera P (1988) Sulfhydryl groups and peroxidaselike activity of albumin as scavenger of organic peroxides. Pharmacol Res Commun 20:545–552

    PubMed  CAS  Google Scholar 

  • Podet EJ, Shaffer DR, Gianturco SH, Bradley WA, Yang CY, Guyton JR (1991) Interaction of low density lipoproteins with human aortic elastin. Arteriosclerosis Thromb 11:116–122

    CAS  Google Scholar 

  • Quinn MT, Parthasarathy S, Steinberg D (1985) Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoprotein. Proc Natl Acad Sci USA 82:5949–5953

    PubMed  CAS  Google Scholar 

  • Reidy MA (1985) A reassessment of endothelial injury and arterial lesion formation. Lab Invest 53:513–520

    PubMed  CAS  Google Scholar 

  • Robbins RA, Wagner WD, Register TC, Caterson B (1992) Demonstration of a keratan sulfate-containing proteoglycan in atherosclerotic aorta. Arteriosclerosis Thromb 12:83–91

    CAS  Google Scholar 

  • Robert L, Jacob MP, Frances C, Godeau G, Hornebeck W (1984) Interaction between elastin and elastases and its role in the aging of the arterial wall, skin and other connective tissues:a review. Mech Ageing Dev 28:155–166

    PubMed  CAS  Google Scholar 

  • Rodgers GM, Kane WH, Pitas RE (1988) Formation of factor Va by atherosclerotic rabbit aorta mediates factor Xa-catalyzed prothrombin activation. J Clin Invest 81:1911–1919

    PubMed  CAS  Google Scholar 

  • Rosenfeld ME, Tsukada T, Gown AM, Ross R (1987) Fatty streak initiation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7:9–23

    PubMed  CAS  Google Scholar 

  • Rosenfeld ME, Chait A, Bierman EL, King W, Goodwin P, Walden CE, Ross R (1988) Lipid composition determines aortic lipid composition of aorta of Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Plasma liqid composition of hypercholesterolemic rabbits. Arteriosclerosis 8:338–347

    PubMed  CAS  Google Scholar 

  • Rosenfeld ME, Palinski W, Yla-Herttuala S, Butler S, Witztum JL (1990) Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity in WHHL rabbits. Arteriosclerosis 10:336–349

    PubMed  CAS  Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis:an update. N Engl J Med 314:488–500

    PubMed  CAS  Google Scholar 

  • Ross R (1992) Endothelial dysfunction and atherosclerosis. In: Simionescu N, Simionescu M (eds) Endothelial cell dysfunctions. Plenum, New York, pp 295–307

    Google Scholar 

  • Rus HG, Niculescu F, Constantinescu E, Cristea A, Vlaicu R (1986) Immunoelectron-microscopic localization of the terminal C5b-9 complement complex in human atherosclerotic fibrous plaque. Atherosclerosis 61:35–43

    PubMed  CAS  Google Scholar 

  • Ryan US (1987) Endothelial cell activation responses. In: Ryan US (ed) Pulmonary endothelium in health and disease. Dekker, New York, pp 3–33

    Google Scholar 

  • Sambandam T, Baker JR, Christner JE, Ekborg SL (1991) Specificity of low density lipoproteinglycosaminoglycan interaction. Arteriosclerosis Thromb 11:561–568

    CAS  Google Scholar 

  • Schwartz CJ, Valente AJ, Sprague EA, Kelley JL, Nerem RM (1991) The pathogenesis of atherosclerosis:an overview. Clin Cardiol 14:1–16

    Google Scholar 

  • Schwenke DC, Carew TE (1989) Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis 9:895–907

    PubMed  CAS  Google Scholar 

  • Seifert PS, Hugo F, Hansson GK, Bhakdi S (1989) Prelesional complement activation in experimental atherosclerosis. Lab Invest 60:747–754

    PubMed  CAS  Google Scholar 

  • Sevanian A, Berliner J, Peterson H (1991) Uptake metabolism, and cytotoxicity of isomeric cholesterol-5,6-epoxides in rabbit aortic endothelial cells. J Lipid Res 32:147–155

    PubMed  CAS  Google Scholar 

  • Shaikh M, Martini S, Quiney JR, et al. (1988) Modified plasma-derived lipoproteins in human atherosclerotic plaques. Atherosclerosis 69:165–172

    PubMed  CAS  Google Scholar 

  • Shatos MA, Doherty JM, Hoak JC (1991) Alteration in human vascular endothelial cell function by free radicals. Platelet adherence and prostacyclin release. Arteriosclerosis Thromb 11:594–601

    CAS  Google Scholar 

  • Sima A, Bulla A, Simionescu N (1990) Experimental obstructive coronary atherosclerosis in the hyperlipidemic hamster. J Submicrosc Cytol Pathol 22:1–16

    PubMed  CAS  Google Scholar 

  • Simionescu D, Iozzo RV, Kefalides NA (1989) Bovine pericardial proteoglycan:biochemical, immunochemical and ultrastructural studies. Matrix 9:301–310

    PubMed  CAS  Google Scholar 

  • Simionescu N (1988) Prelesional changes of arterial endothelium in hyperlipoproteinemic atherogenesis. In: Simionescu N, Simionescu M (eds) Endothelial cell biology in health and disease. Plenum, New York, pp 385–429

    Google Scholar 

  • Simionescu M (1992a) Endothelial cell response to normal and abnormal stimuli:modulation, dysfunction, injury-adaptation, repair, death. In: Simionescu N, Simionescu M (eds) Endothelial cell dysfunction. Plenum, New York, pp 3–9

    Google Scholar 

  • Simionescu N (1992b) Endothelial cell dysfunction and injury in experimental hyperlipidemic atherogenesis. In: Simionescu N, Simionescu M (eds) Endothelial cell dysfunction. Plenum, New York, pp 321–344

    Google Scholar 

  • Simionescu N, Simionescu M (1985) Interactions of endogenous lipoproteins with capillary endothelium in spontaneously hyperlipoproteinemic rats. Microvasc Res 30:314–332

    PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N (1991a) Endothelial transport of macromolecules:transcytosis and endocytosis. Cell Biol Rev 25:1–78

    CAS  Google Scholar 

  • Simionescu N, Mora R, Vasile E, Lupu F, Filip AD, Simionescu M. (1990) Ann. N.Y. Acad. Sci. 598:1–16

    PubMed  CAS  Google Scholar 

  • Simionescu N, Simionescu M (1991b) Cellular interactions of lipoproteins with the vascular endothelium:endocytosis and transcytosis. In: Shaw JM (ed) Lipoproteins as carriers of pharmacological agents. Dekker, New York, pp 45–95

    Google Scholar 

  • Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M (1986) Prelesional events in atherogenesis:accumulation of extracellular cholesterol-rich liposomes in the intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol 123:109–125

    PubMed  CAS  Google Scholar 

  • Sloop CH, Dory L, Roheim PS (1987) Interstitial fluid lipoproteins. J Lipid Res 28:225–237

    PubMed  CAS  Google Scholar 

  • Small DM, Shipley GG (1974) Physical chemical basis of lipid deposition in atherosclerosis. Science 185:129–177

    Google Scholar 

  • Smelting-Havinga I, Mommaas M, van Hinsbergh VWM, Daha MR, Daems WT, Vermeer B-J (1989) Immunoelectron microscopic visualization of the transcytosis of low density lipoproteins in perfused rat arteries. Eur J Cell Biol 48:27–36

    Google Scholar 

  • Smith EB (1986) Plasma macromolecules in interstitial fluid from normal and atherosclerotic human aorta. Monogr Atheroscler 14:179–183

    PubMed  CAS  Google Scholar 

  • Smith EB (1990) Lipids, lipoproteins and antioxidants in cardiovascular dysfunction. Biochem Soc Trans 19:235–241

    Google Scholar 

  • Smith EB, Ashall C (1983) Variability of the electrophoretic mobility of low density lipoprotein. Comparison of interstitial fluid from human aortic intima and serum. Atherosclerosis 49:89–98

    PubMed  CAS  Google Scholar 

  • Smith EB, Staples EM (1980) Distribution of plasma proteins across the human aortic wall. Barrier functions of endothelium and internal elastic lamina. Atherosclerosis 37:579–592

    PubMed  CAS  Google Scholar 

  • Smith EB, Staples EM (1982) Intimai and medial plasma protein concentrations and endothelial functions. Atherogenesis 41:295–308

    CAS  Google Scholar 

  • Spady DK, Huettinger M, Bilheimer DW, Dietschy JM (1987) Role of receptor-independent low density lipoprotein transport in the maintenance of tissue cholesterol balance in the normal and WHHL rabbit. J Lipid Res 28:32–41

    PubMed  CAS  Google Scholar 

  • Srinivasan SR, Yost C, Radhakrishnamurthy B, Dalferes ER Jr, Berenson GS (1981) Lipoproteinelastin interactions in human aorta fibrous plaque lesions. Atherosclerosis 38:137–147

    PubMed  CAS  Google Scholar 

  • Srinivasan SR, Vijayagopal P, Eberle K, Radhakrishnamurthy B, Berenson GS (1989) Low density lipoprotein binding affinity of arterial wall proteoglycans:characteristics of a chondroitin sulfate proteoglycan subfraction. Biochim Biophys Acta 1006:159–166

    PubMed  CAS  Google Scholar 

  • Stary HC (1990) The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J 11:3–19

    PubMed  Google Scholar 

  • Stastny J, Fosslien E, Robertson AL Jr (1986) Human aortic intima protein composition during initial stages of atherogenesis. Atherosclerosis 60:131–139

    PubMed  CAS  Google Scholar 

  • Stein Y, Stein O (1973) Lipid synthesis and degradation and lipoprotein transport in mammalian aorta. In: Atherogenesis:initiating factors. Ciba Foundation, Symposium 12 (new series). Elsevier, Amsterdam, pp 165–183

    Google Scholar 

  • Stein Y, Stein O, Olivecrona T, Halperin G (1985) Putative role of cholesteryl ester transfer protein in removal of cholesteryl ester from vascular interstitium, studied in a model system in cell culture. Biochim Biophys Acta 834:336–345

    PubMed  CAS  Google Scholar 

  • Stein O, Halpern G, Stein Y (1986) Cholesteryl ester efflux from extracellular and cellular elements of the arterial wall:model systems in culture with cholesteryl linoleyl ether. Arteriosclerosis 6:70–78

    PubMed  CAS  Google Scholar 

  • Steinberg D, Pittman RC, Carew TE (1985) Mechanisms involved in the uptake and degradation of low density lipoprotein by the artery wall in vivo. Ann NY Acad Sci 454:195–206

    PubMed  CAS  Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    PubMed  CAS  Google Scholar 

  • Steinbrecher UP, Parthasarathy S, Leake DS, Witztum, JL, Steinberg D (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 81:3883–3887

    PubMed  CAS  Google Scholar 

  • Stemerman MB, Morrel EM, Burke KR, Colton CK, Smith KA, Lees RS (1986) Local variation in artery wall permeability to low density lipoprotein in normal rabbit aorta. Arteriosclerosis 6:64–69

    PubMed  CAS  Google Scholar 

  • Stender S, Hjelms E (1984) In vivo influx of free and esterified plasma cholesterol into human aortic tissue without atherosclerotic lesions. J Clin Invest 74:1871–1881

    PubMed  CAS  Google Scholar 

  • Stender S, Hjelms E (1988) In vivo transfer of cholesteryl ester from high and low density lipoproteins into human aortic tissue. Arteriosclerosis 8:252–262

    PubMed  CAS  Google Scholar 

  • Suits AG, Chait MA, Heinecke JW (1989) Phagocytosis of aggregated lipoprotein by macrophages:low density lipoprotein receptor-dependent foam-cell formation. Proc Natl Acad Sci USA 86:2713–2717

    PubMed  CAS  Google Scholar 

  • Takano T, Mineo C (1990) Atherosclerosis and molecular pathology:mechanisms of cholesteryl ester-accumulation in foam cells and extracellular space of atherosclerotic lesions. J Pharmacobiodyn 13:385–413

    PubMed  CAS  Google Scholar 

  • Tanimura N, Asada Y, Hayashi T, Kisanuki A, Sumiyoshi A (1990) Aortic endothelial cell damage induced by ß-VLDL and macrophages in vitro. Atherosclerosis 85:161–167

    PubMed  CAS  Google Scholar 

  • Tedgui A, Chiron B, Curmi P, Juan L (1987) Effect of nicardipine and verapamil on in vitro albumin transport in rabbit thoracic aorta. Arteriosclerosis 7:80–87

    PubMed  CAS  Google Scholar 

  • Tompkins RG, Yarmush ML, Schnitzer JJ, Colton CK, Smith KA, Stemerman MB (1989) Low-density lipoprotein transport in blood vessel walls of squirrel monkeys. Am J Physiol 257:H452 - H464

    PubMed  CAS  Google Scholar 

  • Trian JE, Meydani SNM, Schaefer EJ (1988) Oxidized low density lipoprotein stimulates prostacyclin production by adult human vascular endothelial cells. Arteriosclerosis 8:810–818

    Google Scholar 

  • Trillo AA, Prichard RW (1979) Early endothelial changes in experimental primate atherosclerosis. Lab Invest 41:294

    PubMed  CAS  Google Scholar 

  • van Berkel TJC, De Rijke YB, Kruijt JK (1991) Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells. J Biol Chem 266:2282–2289

    PubMed  Google Scholar 

  • van der Wal AC (1989) Atherosclerotic lesions in human. In situ immunophenotypic analysis suggesting an immune mediated response. Lab Invest 61:166–172

    PubMed  Google Scholar 

  • Vasile E, Simionescu N (1985) Transcytosis of low density lipoprotein through vascular endothelium. In: Seno E, Copley AL, Ventkatachalam MA, Hamashida Y, Tsujii T (eds) Glomerular dysfunction and Biopathology of vascular wall. Academic New York, pp 87–102

    Google Scholar 

  • Vasile E, Simionescu M, Simionescu N (1983) Visualization of the binding, endocytosis and transcytosis of low density lipoproteins in the arterial endothelium in situ. J Cell Biol 96:1677–1689

    PubMed  CAS  Google Scholar 

  • Vasile E, Antohe F, Simionescu M, Simionescu N (1989) Transport pathways of beta-VLDL by aortic endothelium of normal and hypercholesterolemic rabbits. Atherosclerosis 75:195–210

    PubMed  CAS  Google Scholar 

  • Velican C, Velican D (1986) Atherosclerotic involvement of coronary branch vessels. Atherosclerosis 60:237–250

    PubMed  CAS  Google Scholar 

  • Vijayagopal P, Srinivasan SR, Radhakrisnamurthy B, Berenson GS (1991) Studies on the mechanism of uptake of low density lipoprotein-proteoglycan complex in macrophages. Biochim Biophys Acta 1092:291–297

    PubMed  CAS  Google Scholar 

  • Vlaicu R, Niculescu F, Rus HG, Cristea A (1985) Immunochistochemical complex in human aortic fibrous plaque. Atherosclerosis 57:163–170

    PubMed  CAS  Google Scholar 

  • Volker W, Schmidt A, Oortmann W, Broszey T, Faher V, Buddecke E (1990) Mapping of proteoglycans in atherosclerotic lesions. Eur Hearth J 11 [Suppl E]:29–40

    Google Scholar 

  • Weis JR, Pitas RE, Wilson BD, Rodgers GM (1991) Oxidized low density lipoprotein increases cultured human endothelial cell tissue factor activity and reduces protein C activation. FASEB J 5:2459–2465

    PubMed  CAS  Google Scholar 

  • Wiklund O, Carew TE, Steinberg D (1985) Role of the low density lipoprotein receptor in penetration of low density lipoprotein into rabbit aortic wall. Arteriosclerosis 5:135–141

    PubMed  CAS  Google Scholar 

  • Wilson J, Winter M, Shashy MD (1990) Oxidants, ATP depletion and endothelial permeability to macromolecules. Blood 76:2578–2582

    PubMed  CAS  Google Scholar 

  • Wissler RW, Vesselinovitch D (1977) Atherosclerosis in nonhuman primates. In: Brandley CA, Cornelius CE, Simpson CF (eds) Advances in veterinary science and comparative medicine, vol 21. Academic, New York, pp 351–420

    Google Scholar 

  • Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    PubMed  CAS  Google Scholar 

  • Yla-Herttuala S, Solakivi T, Hirvonen J, et al. (1987) Glycosaminoglycans and apoliproteins B and A-I in human aortas. Chemical and immunological analysis of lesion-free aortas from children and adults. Arteriosclerosis 7:333–340

    PubMed  CAS  Google Scholar 

  • Yla-Herttuala S, Jaakkola O, Enholm C, Tikkanen MJ, Solaviki T, Sarkioja T, Nikkari T (1988) Characterization of two lipoproteins containing apolipoproteins B and E from lesion-free human aortic intima. J Lipid Res 29:563–572

    CAS  Google Scholar 

  • Yla-Herttuala S, Palinski W, Rosenfeld ME, et al. (1989) Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 84:1086–1095

    PubMed  CAS  Google Scholar 

  • Yla-Herttuala S, Lipton BA, Rosenfeld ME, et al. (1991) Macrophages express monocyte chemotactic protein (MCP-1) in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 88:5252–5256

    PubMed  CAS  Google Scholar 

  • Zand T, Nunnari JJ, Hofman AH, Savilonis B.I, MacWilliams B, Majno G, Joris I (1988) Endothelial adaptations in aortic stenosis. Correlation with flow parameters. Am J Pathol 133:407–418

    PubMed  CAS  Google Scholar 

  • Zhang H, Davis WB, Chen X, Whisler RL, Cornwell DG (1989) Studies on oxidized low density lipoproteins. Controlled oxidation and a prostaglandin artifact. J Lipid Res 30:141–148

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simionescu, N., Sima, A., Dobrian, A., Tirziu, D., Simionescu, M. (1993). Pathobiochemical Changes of the Arterial Wall at the Inception of Atherosclerosis. In: Roessner, A., Vollmer, E. (eds) Recent Progress in Atherosclerosis Research. Current Topics in Pathology, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76849-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76849-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76851-4

  • Online ISBN: 978-3-642-76849-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics