The Pathology of Artificial Joints

  • U. Löhrs
  • I. Bos
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 86)

Abstract

The significance of artificial joint pathology has become clear in view of the approximately 600 000 joint prosthesis implantations performed worldwide each year. Today the chief indications for endoprosthetic joint replacement are serious degenerative joint disease and femoral neck fracture in combination with osteoarthrosis and rheumatoid arthritis; the procedures are less liberally applied in younger patients because of their greater life expectancy and the risk of long-term complications.

Keywords

Fatigue Nickel Toxicity Torque Osteoporosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agins HJ, Alcock NW, Bansal M et al. (1988) Metallic wear in failed titanium-alloy total hip replacements. J Bone Joint Surg [Am] 70: 347–356Google Scholar
  2. Albrektsson T, Linder L (1984) Bone injury caused by curing bone cement. A vital microscopic study in the rabbit tibia. Clin Orthop 183: 280–287PubMedGoogle Scholar
  3. Aldinger G (1987) Der Lockerungsvorgang der Hüfttotalendoprothese unter besonderer Berücksichtigung des Zements. Aktuel Probl Chir Orthop 31: 337–341PubMedGoogle Scholar
  4. Arcq M (1973) Die paraartikulären Ossifikationen — eine Komplikation der Totalendoprothese des Hüftgelenks. Arch Orthop Unfallchir 77: 108–131PubMedCrossRefGoogle Scholar
  5. Atkinson JR (1975) Mechanical properties and wear behaviour of plastics in relation to their use in prostheses. Br Polym J 7: 93–107CrossRefGoogle Scholar
  6. Bean DJ, Convery FR, Woo SL-Y, Lieber RL (1987) Regional variation in shear strength of the bone—polymethylmethacrylate interface. J Arthroplasty 2: 293–298PubMedCrossRefGoogle Scholar
  7. Beneke G, Kuprasch R, Mohr W, Paulini K, Mohing W (1973) Die Reaktion der Gelenkkapsel nach Totalarthroplastik des Hüftgelenkes. Arch Orthop Unfallchir 75: 289–301PubMedCrossRefGoogle Scholar
  8. Biehl G, Harms J, Mäusle E (1975) Tierexperimentelle und histopathologische Untersuchungen über die Anpassungsvorgänge des Knochens nach der Implantation von “Tragrippen-Endoprothesen”. Arch Orthop Unfallchir 81: 105–118PubMedCrossRefGoogle Scholar
  9. Black J, Maitin EC, Gelman H, Morris DM (1983) Serum concentrations of chromium, cobalt and nickel after total hip replacement: a six month study. Biomaterials 4: 160–164PubMedCrossRefGoogle Scholar
  10. Black J, Sherk H, Bonini J, Rostoker WR, Schajowicz F, Galante JO (1990) Metallosis associated with a stable titanium—alloy femoral component in total hip replacement. A case report. J Bone Joint Surg [Am] 72: 126–130Google Scholar
  11. Bobyn JD, Engh CA, Glassman AH (1987) Histologic analysis of a retrieved microporous-coated femoral prosthesis. A seven-year case report. Clin Orthop 224: 303–310PubMedGoogle Scholar
  12. Bocco F, Langan P, Charnley J (1977) Changes in the calcar femoris in relation to cement technology in total hip replacement. Clin Orthop 128: 287–295PubMedGoogle Scholar
  13. Bos I, Löhrs U (1991) Morphologie der Sekundarkapsel bei Hüftgelenkendoprothesen und Bedeutung des Materialabriebs. Eine Untersuchung an Autopsien. Pathologe 12: 82–88PubMedGoogle Scholar
  14. Bos I, Lindner B, Seydel U, Johannisson R, Dörre E, Henßge EJ, Löhrs U (1990a) Untersuchungen über die Lockerungsursache bei zementierten Hüftgelenkendoprothesen. Licht- und elektronenmikroskopische Untersuchung und Laser-Mikrosonden-Massenanalyse. Z Orthop 128: 73–82PubMedCrossRefGoogle Scholar
  15. Bos I, Johannisson R, Löhrs U, Lindner B, Seydel U (1990b) Comparative investigations of regional lymph nodes and pseudocapsules after implantation of joint endoprostheses. Pathol Res Pract 186: 707–716PubMedCrossRefGoogle Scholar
  16. Bos I, Meeuwssen E, Henßge EJ, Löhrs U (1991) Unterschiede des Polyäthylenabriebs bei Hüftgelenkendoprothesen mit Keramik- und Metall-Polyäthylenpaarung der Gleitflächen. Eine Untersuchung an Operations- und Autopsiematerial. Z Orthop 129: 507–515PubMedCrossRefGoogle Scholar
  17. Bösch CP, Harms H, Lintner F (1982) Nachweis des Katalysatorbestandteiles Dimethylparatoluidin im Knochenzement, auch nach mehrjähriger Implantation. Arch Toxicol 51: 157–166CrossRefGoogle Scholar
  18. Bösch CP, Harms H, Lintner F (1987) Zur Toxizität der Knochenzementbestandteile. Aktuel Probl Chir Orthop 31: 87–89PubMedGoogle Scholar
  19. Brinkmann KE, Heilmann K (1974) Klinische, röntgenologische und feingewebliche Untersuchungen an ausgelockerten Hüftgelenkendoprothesen. Arch Orthop Unfallchir 80: 333–342PubMedCrossRefGoogle Scholar
  20. Brooker AF, Bowerman JW, Robinson RA, Riley LH (1973) Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Joint Surg [Am] 55: 1629–1632Google Scholar
  21. Brown KJ, Atkinson JR, Dowson D, Wright V (1976) The wear of ultrahigh molecular weight polyethylene and a preliminary study of its relation to the in vivo behaviour of replacement hip joints. Wear 40: 255–264CrossRefGoogle Scholar
  22. Buchert PK, Vaughn BK, Mallory TH, Engh CA, Bobyn JD (1986) Excessive metal release due to loosening and fretting of sintered particles on porous—coated hip prostheses. J Bone Joint Surg [Am] 68: 606–609Google Scholar
  23. Caravia L, Dowson D, Fisher J, Jobbins B (1990) The influence of bone and bone cement debris on counterface roughness in sliding wear tests of ultra-high molecular weight polyethylene on stainless steel. Proc Inst Mech Eng 204: 65–70CrossRefGoogle Scholar
  24. Chandler HP, Reineck FT, Wixson RL, McCarthy JC (1981) Total hip replacement in patients younger than thirty years old. J Bone Joint Surg [Am] 63: 1426–1434Google Scholar
  25. Charnley J (1961) Arthroplasty of the hip: a new operation. Lancet I: 1129–1132Google Scholar
  26. Chamley J (1964) The bonding of prostheses to bone by cement. J Bone Joint Surg [Br] 46: 518–529Google Scholar
  27. Chamley J (1970) The reaction of bone to self-curing acrylic cement. A long-term histological study in man. J Bone Joint Surg [Br] 52: 340–353Google Scholar
  28. Charnley J (1972) The long-term result of low-friction arthroplasty of the hip performed as a primary intervention. J Bone Joint Surg [Br] 54: 61–76Google Scholar
  29. Chamley J, Follaci FM, Hammond BT (1968) The long-term reaction of bone to self-curing acrylic cement. J Bone Joint Surg [Br] 50: 822–829Google Scholar
  30. Charosky CB, Bullough PG, Wilson PD (1973) Total hip replacement failures. A histological evaluation. J Bone Joint Surg [Am] 55: 49–58Google Scholar
  31. Christie AJ, Weinberger KA, Dietrich M (1977) Silicone lymphadenopathy and synovitis. Complications of silicone elastomer finger joint prostheses. JAMA 237: 1463–1464PubMedCrossRefGoogle Scholar
  32. Clarke IC (1981) Wear of artificial joint materials. Friction and wear studies: validity of wear-screening protocols. Eng Med 10: 115–112CrossRefGoogle Scholar
  33. Clarke IC, Black K, Rennie C, Amstutz HC (1976) Can wear in total hip arthroplasties be assessed from radiographs? Clin Orthop 121: 126–142PubMedGoogle Scholar
  34. Clarke IC, Dorlot JM, Graham J, et al. (1988) Biomechanical stability and design. Ann NY Acad Sci 523: 292–296PubMedCrossRefGoogle Scholar
  35. Coleman RF, Herrington J, Scales JT (1973) Concentration of wear products in hair, blood, and urine after total hip replacement. Br Med J 3: 527–529CrossRefGoogle Scholar
  36. Comadoll JL, Sherman RE, Gustilo RB, Bechthold JE (1988) Radiographic changes in bone dimensions in asymptomatic cemented total hip arthroplasties. Results of nine to thirteen-year follow-up. J Bone Joint Surg [Am] 70: 433–438Google Scholar
  37. Convery FR, Gunn DR, Hughes JD, Martin WE (1975) The relative safety of polymethylmethacrylate: a controlled clinical study of randomly selected patients treated with Chamley and Ring total hip replacements. J Bone Joint Surg [Am] 57: 57–64Google Scholar
  38. Cotta H, Schulitz KP (1970) Komplikationen der Hüftalloarthro-plastik durch periartikuläre Gewebereaktion. Arch Orthop Unfallchir 69: 39–59PubMedCrossRefGoogle Scholar
  39. Courpied J, Postel M (1987) Aseptic loosening among Chamley-type prostheses. In: Postel M, Kerboul M, Evrard J, Courpied JP (eds) Total hip replacement. Springer, Berlin Heidelberg New York, pp 79–83Google Scholar
  40. Crout DHG, Corkill JA, James ML, Ling RSM (1979) Methylmethacrylate metabolism in man. The hydrolysis of methylmethacrylate to methacrylic acid during total hip replacement. Clin Orthop 141: 90–95PubMedGoogle Scholar
  41. Daniel M, Dingle JT, Webb M, Heath JC (1963) The biological action of cobalt and other metals. I. The effect of cobalt on the morphology and metabolism of rat fibroblasts in vitro. Br J Exp Pathol 44: 163–176PubMedGoogle Scholar
  42. Dannenmaier WC, Haynes DW, Nelson CL (1985) Granulomatous reaction and cystic bony destruction associated with high wear rate in a total knee prosthesis. Clin Orthop 198: 224–230PubMedGoogle Scholar
  43. Dawihl W, Mittelmeier H, Dörre E, Altmeyer G, Hanser U (1979) Zur Tribologie von Hüftgelenk-Endoprothesen aus Aluminiumoxid-Keramik. Med Orthop Tech 99: 114–118Google Scholar
  44. Delling G, Krumme H, Engelbrecht E, Heise K, Kutz R (1983) Reaction of bone tissue after longterm implantation of total joint arthroplasty. A morphological study. In: Kutz R (ed) Proceedings, 2nd international workshop of the design and application of tumor prostheses for bone and joint reconstruction. Egermann, Vienna pp 37–39Google Scholar
  45. Delling G, Kofeldt C, Engelbrecht E (1987) Knochen- und Grenzschichtveränderungen nach Anwendung von Knochenzement—Langzeituntersuchungen an humanem Biopsie-, Operations- und Autopsiematerial. Aktuel Probl Chir Orthop 31: 163–171PubMedGoogle Scholar
  46. Dielert E, Milachowski K, Schramel P (1983) Die Bedeutung der legierungsspezifischen Elemente Eisen, Kobalt, Chrom und Nickel für die aseptische Lockerung von Hüftgelenkstotalendoprothesen. Z Orthop 121: 58–63PubMedCrossRefGoogle Scholar
  47. Dienel RB, Jungnickel I, Holzweissig F, Manitz L, Hellinger J (1984) Mikrobewegungen von zementfixierten Hüftendoprothesenschäften in Leichenfemora. Beitr Orthop Traumatol 31: 151–158PubMedGoogle Scholar
  48. Dobbs HS, Minsky MJ (1980) Metal ion release after total hip replacement. Biomaterials 1: 193–198PubMedCrossRefGoogle Scholar
  49. Dorr LD, Bloebaum R, Emmanual J, Meldrum R (1990) Histologic, biochemical and ion analysis of tissue and fluids retrieved during total hip arthroplasty. Clin Orthop 261: 82–95Google Scholar
  50. Dörre E, Dawihl W (1978) Mechanische und tribologische Eigenschaften keramischer Endoprothesen. Biomed Tech 23: 305–310CrossRefGoogle Scholar
  51. Dörre E, Beutler H, Geduldig D (1975) Anforderungen an oxidkeramische Werkstoffe als Biomaterial für künstliche Gelenke. Arch Orthop Unfallchir 83: 269–278PubMedCrossRefGoogle Scholar
  52. Dörre E, Dawihl W, Altmeyer G (1977) Dauerfestigkeit keramischer Hüftendoprothesen. Biomed Tech 22: 3–7CrossRefGoogle Scholar
  53. Dowling JM, Atkinson JR, Dowson D, Charnley J (1978) The characteristics of acetabular cups worn in the human body. J Bone Joint Surg [Br] 60: 375–382Google Scholar
  54. Draenert K (1981) The John Chamley award paper. Histomorphology of the bone-to-cement interface remodelling of the cortex and revascularization of the medullary canal in animal experiments. In: Salvati EA (ed) The hip. Proceedings of the ninth open scientific meeting of The Hip Society. Mosby, St. Louis, pp 71–110Google Scholar
  55. Draenert K, Rudigier J (1978) Histomorphologie des Knochen-Zement-Kontaktes. Eine tierexperimentelle Phänomenologie der knöchernen Umbauvorgänge. Chirurg 49: 276–285PubMedGoogle Scholar
  56. Draenert K, Rudigier J, Herrmann W, Willenegger H (1976) Tierexperimentelle Studie zur Histomorphologie des Knochen-Zement-Kontaktes. Helv Chir Acta 43: 769–773PubMedGoogle Scholar
  57. Eftekhar NS (1971) Charnley “Low friction torque” arthroplasty. A study of long-term results. Clin Orthop 81: 93–104PubMedCrossRefGoogle Scholar
  58. Eftekhar NS (1973) The surgeon and clean air in the operating room. Clin Orthop 96: 188–194PubMedGoogle Scholar
  59. Engh CA, Massin P (1989) Cementless total hip arthroplasty using the anatomic medullary locking stem. Clin Orthop 249: 141–158PubMedGoogle Scholar
  60. Eyb R (1987) Die unterschiedlichen Veränderungen am Calcar femoris bei zementierten und zementfreien Hilft-Endoprothesen. Aktuel Probl Chir Orthop 31: 196–200PubMedGoogle Scholar
  61. Fagan MJ, Lee MC (1986) Role of the collar on the femoral stem of cemented total hip replacements. J Biomed Eng 8: 295–304PubMedCrossRefGoogle Scholar
  62. Feith R (1975) Side effects of acrylic cement implanted into bone: a histological, (micro)angiographic, fluorescence-microscopic and autoradiographic study in the rabbit femur. Acta Orthop Scand Suppl 161: 1–136Google Scholar
  63. Forest M (1987) Histopathology and the diagnosis of infection. In: Postel M, Kerboul M, Evrard J, Courpied JP (eds). Total hip replacement. Springer, Berlin Heidelberg New York, pp 115–117Google Scholar
  64. Forest M, Carlioz A, Vacher Lavenu MC, Postel M, Kerboull M, Tomeno B, Courpied JP (1991) Histological patterns of bone and articular tissues after orthopaedic reconstructive surgery (artifical joint implants). Pathol Res Pract 187: 963–977PubMedGoogle Scholar
  65. Freeman MAR, Bradley GW, Revell PA (1982) Observations upon the interface between bone and Polymethylacrylate cement. J Bone Joint Surg [Br] 64: 489–493Google Scholar
  66. Gaudillat C (1987) Infective complications of total hip replacement. In: Postel M, Kerboul M, Evrard J, Courpied JP (eds) Total hip replacement. Springer, Berlin Heidelberg New York, pp 105–106Google Scholar
  67. Gaudillat C, Deplus P (1987) Infective complications of total hip replacement. Diagnosis of chronic infection. In: Postel M, Kerboul M, Evrard J, Courpied JP (eds) Total hip replacement. Springer, Berlin Heidelberg New York, pp 110–115Google Scholar
  68. Gebauer D, Blümel G, Rupp G (1983) Der Stellenwert der Reibung beim Lockerungsprozeß von Totalendoprothesen der Hüfte. Z Orthop 121: 634–639PubMedCrossRefGoogle Scholar
  69. Goebel G, Ohnsorge J (1973) Stand der experimentellen Untersuchungen zur Wechselwirkung zwischen Knochenzement und Lagergewebe: thermische oder toxische Schädigung? In: Cotta H, Schulitz KP (eds) Der totale Hüftgelenkersatz. Grundlagenforschung, Indikation, Komplikationen, Ergebnisse und Begutachtung. Thieme, Stuttgart, pp 164–171Google Scholar
  70. Gold BL, Walker PS (1974) Variables affecting the friction and wear of metal-on-plastic total hip joints. Clin Orthop 100: 270–278PubMedGoogle Scholar
  71. Goldring SR, Schiller AL, Roelke M, Rourke CM, O’Neill DA, Harris WH (1983) The synovial-like membrane at the bone-cement interface in loose total hip replacements and its proposed role in bone lysis. J Bone Joint Surg [Am] 65: 575–584Google Scholar
  72. Goldring SR, Jasty M, Roelke MS, Rourke CM, Bringhurst FR, Harris WH (1986) Formation of a synovial-like membrane at the bone-cement interface. Its role in bone resorption and implant loosening after total hip replacement. Arthritis Rheum 29: 836–842PubMedCrossRefGoogle Scholar
  73. Goodman SB, Chin RC, Chiou SS, Schurmann DJ, Woalson ST, Masada MP (1989) A clinicalpathological-biochemical study of the membrane surrounding loosened and non-loosened total hip arthroplasties. Clin Orthop 244: 182–187PubMedGoogle Scholar
  74. Griffiths HJ, Burke J, Bonfiglio TA (1987) Granulomatous pseudotumors in total joint replacement. Skeletal Radiol 16: 145–152CrossRefGoogle Scholar
  75. Griss P, Heimke G (1981) Five years experience with ceramic-metal-composite hip endoprostheses. I. Clinical evaluation. Arch Orthop Trauma Surg 98: 157–164PubMedCrossRefGoogle Scholar
  76. Griss P, von Andrian-Werburg H, Krempien B, Heimke G (1973a) Biological activity and histocompatibility of dense Al2O3/MgO ceramic implants in rats. J Biomed Mater Res (Symp) 4: 453–462CrossRefGoogle Scholar
  77. Griss P, Krempien B, von Andrian-Werburg H, Heimke G, Fleiner R (1973b) Experimentelle Untersuchung zur Gewebeverträglichkeit oxidkeramischer (Al203) Abriebteilchen. Arch Orthop Unfallchir 76: 270–279PubMedCrossRefGoogle Scholar
  78. Griss P, Heimke G, Werner E, Bleicher J, Jentschura G (1978) Was bedeutet die Resorption des Calcar femoris nach der Totalendoprothesenoperation der Hüfte? Eine vergleichende Studie an ChamleyMüller- und Oxidkeramikendoprothesen ( Typ Lindenhof ). Arch Orthop Trauma Surg 92: 225–232PubMedCrossRefGoogle Scholar
  79. Gross U, Hahn F, Strunz V (1984) Das Interface von Knochenzement in Autopsie und Experiment. In: Rahmanzadeh R, Faensen M (eds) Hüftgelenksendoprothetik. Aktueller Stand–Perspektiven. Springer, Berlin Heidelberg New York, pp 99–112Google Scholar
  80. Harms J, Mäusle E (1976) Biologishe Verträglichkeitsuntersuchungen von Implantatwerkstoffen im Tierversuch. Med Orthop Tech 96: 103–104Google Scholar
  81. Harris WH, Sledge CB (1990) Total hip and total knee replacement. N Engl J Med 323: 725–731PubMedCrossRefGoogle Scholar
  82. Harris WH, Schiller AL, Scholler J-M, Freiberg RA, Scott R (1976) Extensive localized bone resorption in the femur following total hip replacement. J Bone Joint Surg [Am] 58: 612–618Google Scholar
  83. Harris WH, McCarthy JC, O’Neill DA (1982) Femoral component loosening using contemporary techniques of femoral cement fixation. J Bone Joint Surg [Am] 64: 1063–1067Google Scholar
  84. Hayashi T, Inoue H (1986) Tissue reaction around loosened prostheses: a histological, x-ray, microanalytic and immunological study. Act Med Okayama 40: 229–241Google Scholar
  85. Heilmann K, Diezel PB, RossnerJA, Brinkmann KA (1975) Morphological studies in tissues surrounding alloarthroplastic joints. Virchows Arch [A] 366: 93–106CrossRefGoogle Scholar
  86. Heimke G, Beisler W, von Andrian-Werburg H, Griss P, Krempien B (1973) Untersuchungen an Implantaten aus AL203-Keramik. Ber Dtsch Keram Ges 50: 4–8Google Scholar
  87. Heimke G, Griss P, von Andrian-Werburg H, Krempien B (1974) Aluminiumoxidkeramik, ein neues Biomaterial. Materialeigenschaften und mögliche klinische Anwendungsbereiche. Arch Orthop Unfallchir 78: 216–226PubMedCrossRefGoogle Scholar
  88. Heisel J, Schmitt E (1987) Implantatbrüche bei Keramik-Hüftendoprothesen. Z Orthop 125: 480–490PubMedCrossRefGoogle Scholar
  89. Herman JH, Sowder WG, Anderson D, Appel AM, Hopson CN (1989) Polymethylmethacrylateinduced release of bone-resorbing factors. J Bone Joint Surg [Am] 77: 1530–1541Google Scholar
  90. Hinterberger J,Ungethüm M (1978) Untersuchungen zur Tribologie und Festigkeit von Aluminiumoxidkeramik-Hüftendoprothesen. Z Orthrop 116: 294–303Google Scholar
  91. Holland CJ, Kim KC, Malik MI, Ritter MA (1973) A histologic and hemodynamic study of the toxic effects of monomeric methylmethacrylate. Clin Orthop 90: 262–270PubMedGoogle Scholar
  92. Homsy CA, Tullos HS, Anderson MS, Differrante NM, King JW (1972) Some physiological aspects of prosthesis stabilization with acrylic polymer. Clin Orthop 83: 317–328PubMedCrossRefGoogle Scholar
  93. Hopf TH, Scherr O, Glöbel B, Hopf C (1989) Vergleichende tierexperimentelle Untersuchung zur Gewebeverträglichkeit und Messungen der Radioaktivität verschiedener Röntgenkontrastmittel. Z Orthop 127: 620–624PubMedCrossRefGoogle Scholar
  94. Horowitz SM, Frondoza CG, Lennox DW (1988) Effects of polymethylmethacrylate exposure upon macrophages. J Orthop Res 6: 827–832PubMedCrossRefGoogle Scholar
  95. Howie DW, Vernon-Roberts B, Oakeshott R, Manthey B (1988) A rat model of resorption of bone at the cement—bone interface in the presence of polyethylene wear particles. J Bone Joint Surg [Am] 70: 257–263Google Scholar
  96. Howie DW, Cornish BL, Vernon-Roberts B (1990) Resurfacing hip arthroplasty. Classification of loosening and the role of prosthesis wear particles. Clin Orthop 255: 144–159PubMedGoogle Scholar
  97. Huggler AH, Jacob HA, Schreiber A (1978) Biomechanische Analyse der Lockerung von Femurprothesen. Arch Orthop Trauma Surg 92: 261–272PubMedCrossRefGoogle Scholar
  98. Hulbert SF, Klawitter JJ (1976) Ceramics as a new approach to the improvement of artificial joints. In: Schaldach M, Hohmann D (eds) Advances in artificial hip and knee joint technology. Springer, Berlin Heidelberg New York, pp 287–293Google Scholar
  99. Hulliger L (1962) Untersuchungen über die Wirkung von Kunstharzen (Palacos und Ostamer) in Gewebekulturen. Arch Orthop Unfallchir 54: 581–588PubMedCrossRefGoogle Scholar
  100. Jasty M, Maloney WJ, Bragdon CR, Haire T, Harris WH (1990) Histomorphological studies of the long-term skeletal responses to well fixed cemented femoral components. J Bone Joint Surg [Am] 72: 1220–1229Google Scholar
  101. Johanson NA, Bullough PG, Wilson PD, Salvati EA, Ranawat CS (1987) The microscopic anatomy of the bone-cement interface in failed total hip arthroplasties. Clin Orthop 218: 123–135PubMedGoogle Scholar
  102. Jones DA, Lucas HK, O’Driscoll M, Price CHG, Wibberley B (1975) Cobalt toxicity after McKee hip arthroplasty. J Bone Joint Surg [Br] 57: 289–296Google Scholar
  103. Jorgensen TJ, Munno F, Mitchell TG, Hungerford D (1983) Urinary cobalt levels in patients with porous Austin-Moore prostheses. Clin Orthop 176: 124–126PubMedGoogle Scholar
  104. Jozsa L, Reffy A (1980) Histochemical and histophysical detection of wear products resulting from prostheses. Folia Histochem Cytochem (Krakow) 18: 195–200Google Scholar
  105. KallenbergerA (1984) Untersuchungen zur Zellkompatibilität von Knochenzementen. In: Rahmanzadeh R, Faensen M (eds) Hüftgelenksendoprothetik. Aktueller Stand–Perspektiven. Springer, Berlin Heidelberg New York, pp 95–98Google Scholar
  106. Kircher T (1980) Silicone lymphadenopathy. A complication of silicone elastomer finger joint prostheses. Hum Pathol 11: 240–244PubMedCrossRefGoogle Scholar
  107. Kölbel R, Boenick U (1972) Mechanische Eigenschaften der Verbindung zwischen spongiösem Knochen mit Polymethylmethacrylat bei statischer Belastung. Arch Orthop Unfallchir 73: 89–97PubMedCrossRefGoogle Scholar
  108. Köller W, Müller U, Henßge EJ (1990) Reaktion des knöchernen Lagers nach Implantation von zementierten Endoprothesen am Femur. Z Orthop 128: 67–72PubMedCrossRefGoogle Scholar
  109. Konermann H (1983) Endoprothetic des Hüftgelenkes: Reoperation und deren Ergebnisse. Therapiewoche 33: 475–482Google Scholar
  110. Krause W, Mathis RS (1988) Fatigue properties of acrylic bone cements: review of the literature. J Biomed Mater Res 22: 37–53PubMedGoogle Scholar
  111. Lancaster JK (1969) Abrasive wear of polymers. Wear 14: 223–239CrossRefGoogle Scholar
  112. Leake ES, Wright MJ, Gristina AG (1981) Comparative study of the adherence of alveolar and peritoneal macrophages, and of blood monocytes to methyl methacrylate, polyethylene, stainless steel, and vitallium. J Retie Soc 30: 403–414Google Scholar
  113. Lennox DW, Schofield BH, McDonald DF, Riley LH (1987) A histologic comparison of aseptic loosening of cemented, press-fit, and biologic ingrowth prostheses. Clin Orthop 225: 171–191PubMedGoogle Scholar
  114. Linder L (1977) Reaction of bone to the acute chemical trauma of bone cement. J Bone Joint Surg [Am] 59: 82–87Google Scholar
  115. Linder L, Lindberg L, Carlsson A (1983) Aseptic loosening of hip prostheses. A histologic and enzyme histochemical study. Clin Orthop 175: 93–104PubMedGoogle Scholar
  116. Ling RSM (1981) Loosening experiences at Exeter. Orthop Trans 5: 351Google Scholar
  117. Lintner F, Bösch P (1987) Das Tierexperiment zur Beurteilung der Verträglichkeit von Knochenzement. Aktuel Probl Chir Orthop 31: 188–191PubMedGoogle Scholar
  118. Lintner F, Bösch P, Brand G (1982) Histologische Untersuchungen über Umbauvorgänge an der Zement-Knochengrenze bei Endoprothesen nach 3- bis 10-jähriger Implantation. Pathol Res Pract 173: 376–389PubMedCrossRefGoogle Scholar
  119. Lintner F, Bösch P, Brand G, Knahr K (1984) Vergleichende Untersuchungen zur Nekrosebereitschaft des Kapselgewebes bei Arthrose und endoprothetischem Gelenkersatz. Z Orthop 122: 686–691PubMedCrossRefGoogle Scholar
  120. Lintner F, Bösch P, Brand G (1987) Gewebeschäden durch PMMA-Knochenzement. Aktuel Probl Chir Orthop 31: 172–176PubMedGoogle Scholar
  121. Löer F, Zilkens J, Hofmann J, Michel R (1981) Zum Nachweis körperfremder Spurenelemente nach Langzeitimplantation von Totalendoprothesen aus Kobaltbasislegierungen. Z Orthop 119: 763–766Google Scholar
  122. Löer F, Zilkens J, Michel R, Freisem-Broda G, Bigalke KH (1983) Gewebebelastung mit körperfremden Spurenelementen durch Röntgenkontrastmittel der Knochenzemente. Z Orthop 121: 255–259PubMedCrossRefGoogle Scholar
  123. Löer F, Zilkens J, Michel R, Bigalke KH (1987) Wechselwirkungen zwischen Röntgenkontrastmitteln der Knochenzemente und den Lagergeweben und Körperflüssigkeiten. Aktuel Probl Chir Orthop 31: 177–183PubMedGoogle Scholar
  124. Lombardi AV, Mallory TH, Vaughn BK, Drouillard P (1989) Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. J Bone Joint Surg [Am] 71: 1337–1342Google Scholar
  125. Maguire JK, Coscia MF, Lynch MH (1987) Foreign body reaction to polymeric debris following total hip arthroplasty. Clin Orthop 216: 213–223PubMedGoogle Scholar
  126. Malcolm AJ (1988) Pathology of longstanding cemented total hip replacements in Charnley’s cases. J Bone Joint Surg [Br] 70: 153Google Scholar
  127. Maßhoff W, Neuhaus-Vogel A (1974) Die Gelenkkapsel nach Alloplastik. Arch Orthop Unfallchir 78: 175–198PubMedCrossRefGoogle Scholar
  128. Mattingly DA, Hopson CN, Kahn A, Giannestras NJ (1985) Aseptic loosening in metal-backed acetabular components for total hip replacement. J Bone Joint Surg [Am] 67: 387–391Google Scholar
  129. Mendes DG, Walker PS, Figarola F, Bullough PG (1974) Total surface hip replacement in the dog. A preliminary study of local tissue reaction. Clin Orthop 100: 256–264PubMedGoogle Scholar
  130. Michel R, Hofmann J, Holm R, Zilkens J (1980) Zum Übertritt von Korrosionsprodukten aus Stahlimplantaten in das Kontaktgewebe. Untersuchungen der Implantatoberfläche mit ESCA und instrumentelle Neutronenaktivierungsanalyse des Kontaktgewebes. Z Orthop 118: 793–803PubMedCrossRefGoogle Scholar
  131. Mirra JM, Amstutz HC, Matos M, Gold R (1976) The pathology of the joint tissues and its clinical relevance in prosthesis failure. Clin Orthop 117: 221–240PubMedGoogle Scholar
  132. Mirra JM, Marder RA, Amstutz HC (1982) The pathology of failed total joint arthroplasty. Clin Orthop 170: 175–183PubMedGoogle Scholar
  133. Mittelmeier H, Harms G (1979a) Derzeitiger Stand der zementfreien Verankerung von KeramikMetall-Verbundprothesen. Z Orthop 117: 478–481PubMedGoogle Scholar
  134. Mittelmeier H, Harms J (1979b) Hüftalloplastic mit Keramik-Endoprothesesn bei traumatischen Hüftschäden. Unter besonderer Berücksichtigung zementfrei implantierbarer “Autophor”Tragrippen-Endoprothesen. Unfallheilkunde 83: 67–75Google Scholar
  135. Mittelmeier H, Sitz W, Hanser U (1982) Abriebmessungen bei explantierten KeramikHüftendoprothesen. Z Orthop 120: 487Google Scholar
  136. Modig J, Busch C, Olerud S, Salderen T (1974) Pulmonary microembolism during intramedullary orthopaedic trauma. Acta Anaesthesiol Scand 18: 133–143PubMedCrossRefGoogle Scholar
  137. Mohr HJ (1958) Pathologische Anatomie und kausale Genese der durch selbstpolymerisierendes Methacrylat hervorgerufenen Gewebsveränderungen. Z Exp Med 130: 41–69CrossRefGoogle Scholar
  138. Murray DW, Rae T, Rae T, Rushton N (1989) The influence of the surface energy and roughness of implants on bone resorption. J Bone Joint Surg [Br] 71: 632–637Google Scholar
  139. Nalbandian RM, Swanson AB, Maupin BK (1983) Longterm silicone implant arthroplasty. Implications of animal and human autopsy findings. JAMA, 250: 1195–1198PubMedCrossRefGoogle Scholar
  140. Nicastro JF, Shoj H, Rovere GD, Gristina AG (1975) Effects of methylmethacrylate in S. aureus growth and rabbit alveolar macrophage phagocytosis and glucose metabolism. Surg Forum 26: 501–503PubMedGoogle Scholar
  141. Patterson BM, Healey JH, Cornell CN, Sharrock NE (1991) Cardiac arrest during hip arthroplasty with a cemented long-stem component. J Bone Joint Surg [Am] 73: 271–277Google Scholar
  142. Pedley RB, Meachim G, Gray T (1979) Identification of acrylic cement particles in tissues. Ann Biomed Eng 7: 319–328PubMedCrossRefGoogle Scholar
  143. Pizzoferrato A, Savarino L, Lambertini V (1981) Histopathological grading suggestion for the evaluation of the intolerance in hip joint endo-and arthroprostheses. Chir Organi Mov 66: 147–171Google Scholar
  144. Plitz W, Walter A, Jäger M (1984) Materialspezifische Verschleißerscheinungen der Gleitpaarung Keramik/Keramik bei revidierten Hüftendoprothesen. Z Orthop 122: 299–303PubMedCrossRefGoogle Scholar
  145. Pople IK, Phillips H (1988) Bone cement and the liver. A dose-related effect? J Bone Joint Surg [Br] 70: 364–366Google Scholar
  146. Postel M, Courpied JP (1987) The future of the polyethylene cup. In: Postel M, Kerboul M, Evrard J, Courpied JP (eds) Total hip replacement. Springer, Berlin Heidelberg New York, pp 131–135Google Scholar
  147. Pretzsch J, Hein W (1986) Quantitative Analyse des Chrom-, Nickel-, Molybdän- und Mangangehaltes der Neokapsel nach Totalendoprothesenplastiken der Hüftgelenke. Beitr Orthop Traumatol 33: 120–124PubMedGoogle Scholar
  148. Rae T (1975) A study on the effects of particulate metals of orthopaedic interest on murine macrophages in vitro. J Bone Joint Surg [Br] 57: 44–50Google Scholar
  149. Rae T (1976) Action of wear particles from total joint replacement prostheses on tissues. In: William D, David F (eds) Biocompatibility of implant materials. Sector, London, pp 55–59Google Scholar
  150. Rae T (1978) The haemolytic action of particulate metals (Cd, Cr, Co, Fe, Mo, Ni, Ta, Ti, Zn, Co-Cr alloy). J Pathol 125: 81–89PubMedCrossRefGoogle Scholar
  151. Rae T (1979) Comparative laboratory studies on the production of soluble and particulate metal by total joint prostheses. Arch Orthop Trauma Surg 95: 71–79PubMedCrossRefGoogle Scholar
  152. Rae T (1981) The toxicity of metals used in orthopaedic prostheses. An experimental study using cultured human synovial fibroblasts. J Bone Joint Surg [Br] 63: 435–440Google Scholar
  153. Reinus WR, Gilula LA, Kyriakos M, Kuhlman RE (1985) Histiocytic reaction to hip arthroplasty. Radiology 155: 315–318PubMedGoogle Scholar
  154. Revell PA (1982) Tissue reactions to joint prostheses and the products of wear and corrosion. Curr Top Pathol 73–101Google Scholar
  155. Revell PA, Weightman B, Freeman MAR, Vernon-Roberts B (1978) The production and biology of polyethylene wear debris. Arch Orthop Trauma Surg 91: 167–181PubMedCrossRefGoogle Scholar
  156. Rhinelander FW, Nelson CL, Stewart RD, Stewart CL (1979) Experimental reaming of the proximal femur and acrylic cement implantation. Clin Orthop 141: 74–89PubMedGoogle Scholar
  157. Riede UN, Ruedi T, Rohner YLE, Perren S, Guggenheim R (1974) Quantitative und morphologische Erfassung der Gewebereaktion auf Metallimplantate (Osteosynthesematerial). I. Eine morphometrische, histologische, mikroanalytische und rastereletronenmikroskopische Studie am Schafsknochen. Arch Orthop Unfallchir 78: 199–215PubMedCrossRefGoogle Scholar
  158. Rinecker H, Höllenriegel K (1987) MMA-Toxizität versus Implantationsembolie: Klinische Untersuchungen. Aktuel Probl Chir Orthop 31: 206–209PubMedGoogle Scholar
  159. Rose RM, Radin EL (1982) Wear of polyethylene in the total hip prosthesis. Clin Orthop 170: 107–115PubMedGoogle Scholar
  160. Rose RM, Schneider H, Ries M, Paul I, Crugnola A, Simon SR, Radin EL (1978) A method for the quantitative recovery of polyethylene wear debris from the simulated service of total joint prostheses. Wear 51: 77–84CrossRefGoogle Scholar
  161. Rose RM, Crugnola A, Ries M, Cimino WR, Paul I, Radin EL (1979) On the origins of high in vivo wear rates in polyethylene components of total joint prostheses. Clin Orthop 145: 277–286PubMedGoogle Scholar
  162. Rose RM, Nusbaum HJ, Schneider H, et al. (1980) On the true wear rate of ultra-high-molecular-weight polyethylene in the total hip prosthesis. J Bone Joint Surg [Am] 62: 537–549Google Scholar
  163. Rostoker W, Chao EYS, Galante JO (1978) The appearances of wear on polyethylene–a comparison of in vivo and in vitro wear surfaces. J Biomed Mater Res 12: 317–335PubMedCrossRefGoogle Scholar
  164. Rothman RH, Cohn JC (1990) Cemented versus cementless total hip arthroplasty. A critical review. Clin Orthop 254: 153–169PubMedGoogle Scholar
  165. Rudigier J, Draenert K, Grünert A, Ritter G, Krieg H (1976) Biologische Effekte von Bariumsulfat als Röntgenkontrastmittelbeimengung in Knochenzementen. Eine tierexperimentelle Studie am Kaninchenfemur. Arch Orthop Unfallchir 86: 279–290PubMedCrossRefGoogle Scholar
  166. Rudigier J, Rech R, Walde HJ, Degreif J (1987) Der Einfluß von Röntgenkontrastmitteln in Knochenzementen auf Bindegewebe und Knochenstruktur. In: Willert HG, Buchhorn G (eds) Knochenzement. Huber, Bern, pp 181–183Google Scholar
  167. Salvati EA, Wilson PD, Jolley MN, Vakili F, Aglietti P, Brown GC (1981) A ten-year follow-up study of our first one hundred consecutive Charnley total hip replacements. J Bone Joint Surg [Am] 63: 753–767Google Scholar
  168. Santavirta S, Hoikka V, Eskola A, Konttinen YT, Paavilainen T, Tallroth K (1990a) Aggressive granulomatous lesion in cementless total hip arthroplasty. J Bone Joint Surg [Br] 72: 980–984Google Scholar
  169. Santavirta S, Konttinen YT, Bergrotte V, Eskola A, Tallroth K, Lindholm TS (1990b) Aggressive granulomatous lesions associated with hip arthroplasy. J Bone Joint surg [Am] 72: 252–258Google Scholar
  170. Santavirta S, Konttinen YT, Hoikka V, Eskola A (1991) Immunopathological response to loose cementless acetabular components. J Bone Joint Surg [Br] 73: 38–42Google Scholar
  171. Schneider R (1976) Der Mechanismus der Protheseninstabilität an der Hüfte. HeIv Chir Acta 43: 731–734Google Scholar
  172. Schröder HA, Balassa JJ (1966) Abnormal trace metals in man: zirconium. J Chronic Dis 19: 573–586Google Scholar
  173. Schulitz KP, Dustmann HO (1976) Komplikationen der Totalendoprothese. Arch Orthop Unfallchir 85: 33–50PubMedCrossRefGoogle Scholar
  174. Schwierenga SHH, Basrur PK (1968) Effect of nickel on cultured rat embryo muscle cells. Lab Invest 19: 663–674Google Scholar
  175. Sedel L, Kerboull L, Christel P, Meunier A, Witvoet J (1990) Alumina-on-alumina hip replacement. Results and survivorship in young patients. J Bone Joint Surg [Br] 72: 658–663Google Scholar
  176. Semlitsch M, Willert HG (1971) Gewebsveränderungen im Bereiche metallischer Hüftgelenke; mikroanalytische Untersuchungen mittels Spektralphotometrie, Elektronenstrahlmikroskopie und der Elektronenstrahl-Mikrosonde. Mikrochim Acta 1: 21–37PubMedCrossRefGoogle Scholar
  177. Semlitsch M, Lehmann M, Weber H, Dörre E, Willert HG (1976) Neue Perspektiven zu verlängerter Funktionsdauer künstlicher Hüftgelenke durch Werkstoffkombination PolyäthylenAluminiumoxidkeramik-Metall. Med Orthop Tech 5: 152–157Google Scholar
  178. Semlitsch M, Lehmann M, Weber H, Dörre E, Willert HG (1977) New prospects for a prolonged functional life-span of artificial hip joints by using the material combination polyethylene/aluminum oxide ceramic/metal. J Biomed Mater Res 11: 537–552PubMedCrossRefGoogle Scholar
  179. Shelley WB, Hurley HJ (1958) The allergie origin of zirconium deodorant granulomas. Br J Dermatol 70: 75–101PubMedCrossRefGoogle Scholar
  180. Spector M, Shortkroff S, Hsu HP, Lane N, Sledge CB, Thornhill TS (1990) Tissue changes around loose prostheses. A canine model to investigate the effects of an antiinflammatory agent. Clin Orthop 261: 140–152PubMedGoogle Scholar
  181. Stock D, Diezemann ED, Gottstein J (1980) Results of endoprosthetic hip joint replacement with the aluminium ceramic-metal composite prosthesis “Lindenhof”. Arch Orthop Trauma Surg 97: 7–12PubMedCrossRefGoogle Scholar
  182. Swanson AB (1972) Flexible implant arthroplasty for arthritic finger joints. J Bone Joint Surg [Am] 54: 435–454Google Scholar
  183. Szyskowitz R (1973) Zur Problematik der Knochenzementimplantation. In: Cotta H, Schulitz KP (eds) Der totale Hüftgelenkersatz. Thieme, Stuttgart, pp 171–182Google Scholar
  184. Tallroth K, Eskola A, Santavirta S, Konttinen YT, Lindholm TS (1989) Aggressive granulomatous lesions after hip arthroplasty. J Bone Joint Surg [Br] 71: 571–575Google Scholar
  185. Travis WD, Balogh K, Abraham JL (1985) Silicone granulomas: report of three cases and review of the literature. Hum Pathol 16: 19–27PubMedCrossRefGoogle Scholar
  186. Trepte CT, Gauer EF, Gärtner BM (1985) Erfahrungen mit Endoprothesen mit Keramik/KeramikGleitpaarung ganz oder teilweise zementlos fixiert. Z Orthop 123: 239–244PubMedCrossRefGoogle Scholar
  187. Ungethüm M, Refior HJ (1974) Ist Aluminiumoxidkeramik als Gleitlagerwerkstoff für Totalendoprothesen geeignet? Arch Orthop Unfallchir 79: 97–106PubMedCrossRefGoogle Scholar
  188. Ungethüm M, Winkler-Gniewek W (1983) Untersuchung des Verschleißes an Polyäthylenkomponenten von Endoprothesen nach klinischem Einsatz. Z Orthop 121: 683–692PubMedCrossRefGoogle Scholar
  189. Vernon-Roberts B, Freeman MAR (1976) Morphological and analytical studies of the tissues adjacent to joint prostheses: investigations into the causes of loosening of prostheses. In: Schaldach M, Hohmann D (eds) Advances in artificial hip and knee joint technology. Springer, Berlin Heidelberg New York, pp 148–186Google Scholar
  190. Walker PS, Bullough PG (1973) The effects of friction and wear in artificial joints. Orthop Clin North Am 4: 275–293PubMedGoogle Scholar
  191. Willert HG (1973) Die Reaktion des knöchernen Implantatlagers auf Methylmethacrylatknochenzement. In: Cotta H, Schulitz KP (eds) Der totale Hüftgelenkersatz, Thieme, Stuttgart, pp 182–192Google Scholar
  192. Willert HG (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11: 157–164PubMedCrossRefGoogle Scholar
  193. Willert HG (1987) Die Zerrüttung des Zementköchers. Aktuel Probl Chir Orthop 31: 326–333PubMedGoogle Scholar
  194. Willert HG, Puls P (1972) Die Reaktion des Knochens auf Knochenzement bei der Allo-Arthroplastik der Hüfte. Arch Orthop Unfallchir 72: 33–71PubMedCrossRefGoogle Scholar
  195. Willert HG, Semlitsch M (1973) Die Reaktion der periartikulären Weichteile auf Verschleißprodukte von Endoprothesenwerkstoffen. In: Cotta H, Schulitz KP (eds) Der totale Hüftgelenkersatz. Thieme, Stuttgart, pp 199–209Google Scholar
  196. Willert HG, Semlitsch M (1975) Kapselreaktionen auf Kunststoff und Metallabrieb bei Gelenkendoprothesen. Tech Rundsch Sulzer 2: 1–15Google Scholar
  197. Willert HG, Semlitsch M (1976a) Problems associated with the cement anchorage of artificial joints. In: Schaldach M, Hohmann D (eds) Advances in artificial hip and knee joint technology. Springer, Berling Heidelberg New York, pp 325–346Google Scholar
  198. Willert HG, Semlitsch M (1976b) Tissue reactions to plastic and metallic wear products of joint endoprostheses. In: Gschwend N, Debrunner HU (eds) Total hip prosthesis. Huber, Bern, pp 205–242Google Scholar
  199. Willert HG, Semlitsch M (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11: 157–164PubMedCrossRefGoogle Scholar
  200. Willert HG, Ludwig J, Semlitsch M (1974) Reaction of bone to methacrylate after hip arthroplasty. A long-term gross, light microscopic and scanning electron microscopic study. J Bone Joint Surg [Am] 56: 1368–1382Google Scholar
  201. Willert HG, Semlitsch M, Buchhorn G, Kriete U (1978) Materialverschleiß und Gewebereaktion bei künstlichen Gelenken ( Histopathologie, Biokompatibilität, biologische und klinische Probleme). Orthopäde 7: 62–83Google Scholar
  202. Willert HG, Buchhorn G, Semlitsch M (1980) Die Reaktion des Gewebes auf Verschleißprodukte von Gelenkendoprothesen der oberen Extremitäten. Orthopäde 9: 94–197PubMedGoogle Scholar
  203. Willert HG, Buchhorn GH, Semlitsch M (1981) Recognition and identification of wear products in the surrounding tissues of artificial joint prostheses. In: Dumbleton JH (ed) Tribology of natural and artificial joints. Elsevier, Amsterdam, pp 381–419Google Scholar
  204. Willert HG, Bertram H, Buchhorn GH (1990a) Osteolysis in alloarthroplasty of the hip. The role of ultra-high molecular weight polyethylene wear particles. Clin Orthop 258: 95–107PubMedGoogle Scholar
  205. Willert HG, Bertram H, Buchhorn GH (1990b) Osteolysis in alloarthroplasty of the hip. The role of bone cement fragmentation. Clin Orthop 258: 108–121PubMedGoogle Scholar
  206. Williams DF (1973) The response of the body environment to implants. In: Williams DF, Roaf R (eds) Implants in surgery. W.B. Saunders, London, pp 203–297Google Scholar
  207. Winter GD (1974) Tissue reactions to metallic wear and corrosion products in human patients. J Biomed Mater Res 5: 11–26CrossRefGoogle Scholar
  208. Wroblewski BM, Lynch M, Atkinson JR, Dowson D, Isaac GH (1987) External wear of the polyethylene socket in cemented total hip arthroplasty. J Bone Joint Surg [Br] 61–63Google Scholar
  209. Zichner L (1987) Embolien aus dem Knochenmarkskanal nach Einsetzen von intramedullären Femurkopfendoprothesen mit Polymethylmetacrylat. Aktuel Probl Chir Orthop 31: 201–204PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • U. Löhrs
  • I. Bos

There are no affiliations available

Personalised recommendations