Skip to main content

The Treatment of Positive and Negative Schizophrenic Symptoms with Dopamine Agonists

  • Conference paper
Negative Versus Positive Schizophrenia

Abstract

The introduction of chlorpromazine in psychiatry (Delay and Deniker 1952) demonstrated that acute schizophrenic symptoms can successfully be treated with drugs, and this finding stimulated the search for the pathophysiological and pathobiochemical changes underlying schizophrenia. Steck (1954) and Haase (1955) first described extrapyramidal symptoms and drug-induced parkinsonism as possible side-effects occurring during treatment with neuroleptic agents. The investigation of dopamine as a neurotransmitter (Carlsson et al. 1958; Carlsson and Lindqvist 1963), the dopaminergic deficit in the basal ganglia of patients suffering from Parkinson’s disease (Ehringer and Hornykiewicz 1960) as a result of the degeneration of nigral dopaminergic cells (Hornykiewicz 1973) and the efficacy of L-dopa in the treatment of parkinsonism, especially of akinesia (Birkmayer and Hornykiewicz 1962), led to the hypothesis that dopamine antagonism was responsible for both anti-psychotic and extrapyramidal effects of neuroleptics. The “dopamine hypothesis” of schizophrenia supposes that a functional overactivity of dopaminergic neurotransmission results in acute schizophrenic symptoms (van Rossum 1966; Meltzer and Stahl 1976). According to the positive symptoms appearing during an acute episode of schizophrenia, on the biochemical level an overstimulation of postsynaptic dopamine receptors in the mesolimbic and mesocortical projection areas is hypothesised. The efficacy of classic neuroleptic agents is explained by their ability to block post-synaptic dopamine receptors ofthe D2 type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Psychiatric Association (1980) The Task Force on late neurological effects of antipsychotic drugs: tardive dyskinesia: saummary of a Task Force report of the American Psychiatric Association. Am J Psychiatry 137:1163–1172

    Google Scholar 

  • Andén NE, Golembiowska-Nikitin K, Thornström U (1982) Selective Stimulation of dopamine and noradrenaline autoreceptors by B-HT 920 and B-HT 933 respectively. Naunyn Schmiedebergs Arch Pharmacol 321:100–104

    Article  PubMed  Google Scholar 

  • Andén NE, Grabowska-Andén M, Liljenberg B (1983a) Demonstration of autoreceptors on dopamine neurons in different brain regions of rats treated with gammabutyrolactone. J Neurol Transm 58:143–152

    Article  Google Scholar 

  • Andén NE, Nilsson H, Ros E, Thornström U (1983b) Effects of B-HT 920 and B-HT 933 on dopamine and noradrenaline autoreceptors in the rat brain. Acta Pharmacol Toxicol (Copenh) 52:52–56

    Google Scholar 

  • Angrist B, Rotrosen J, Gershon S (1980) Responses to apomorphine, amphetamine, and neuroleptics in schizophrenic subjects. Psychopharmacology (Berlin) 67:31–38

    Article  CAS  Google Scholar 

  • Amt J, Hyttel J (1990) Dopamine D-2 agonists with high and low efficacies: differentiation by behavioural techniques. J Neural Transm Gen Sect 80(1): 33–50

    Article  Google Scholar 

  • Baldessarini RS (1980) Drugs and the treatment of psychiatric disorders. In: Gilman AG, Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics. MacMillan, New York, pp 397–404

    Google Scholar 

  • Bannon MJ, Michaud RL, Roth RH (1981) Mesocortical dopamine neurons: lack of autoreceptors modulating dopamine synthesis. Mol Pharmacol 19:270–275

    PubMed  CAS  Google Scholar 

  • Baudrey A, Costentin J, Marcais M, Martres MP, Protais P, Schwartz JD (1977) Decreased responsiveness to low doses of apomorphine after dopamine agonists and the possible involvement of hyposensitivity of dopamine autoreceptors. Neurosci Lett 4:203–207

    Article  Google Scholar 

  • Bédard P., Boucher R, DiPaolo T, Labrie F (1984) Interaction between estradiol, prolactin, and striatal dopaminergic mechanism. Adv Neurol 40:489–495

    PubMed  Google Scholar 

  • Biggio G, Casu M, Corda MG, DiBello C, Gessa GL (1978) Stimulation of dopamine synthesis in caudate nucleus by intrastriatal enkepahlins and antagonism by naloxone. Science 200:552–554

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1962) Der 1-Dioxyphenylalanin (= L-DOPA)-Effekt beim Parkinson-Syndrom des Menschen: zur Behandlung und Pathogenese der Parkinson-Akinese. Arch Psychiatr Nervenkr 203:560

    Article  CAS  Google Scholar 

  • Bleich A, Brown SL, Kahn R, van Praag HM (1988) The role of serotonin in schizophrenia. Schizophr Bull 14(2):297–315

    PubMed  CAS  Google Scholar 

  • Brambilla F, Scarone S, Pugnetti L, Massironi R, Penati G, Nobile P (1983) Bromocriptine therapy in chronic schizophrenia: effects on symptomatology, sleep patterns, and prolactin response to stimulation. Psychiatry Res 8:159–169

    Article  PubMed  CAS  Google Scholar 

  • Brown JR, Arbuthnott GW (1983) The electrophysiology of dopamine (D2) receptors: a study of the actions of dopamine on corticostriatal transmission. Neuroscience 10 (2) : 349–355

    Article  PubMed  CAS  Google Scholar 

  • Bunney BS, Grace AA (1978) Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sci 23:1715–1728

    Article  PubMed  CAS  Google Scholar 

  • Burki HR, Asper H, Ruch W, Zuger PE (1978) Bromocriptine, dihydroergotoxine, methysergide, d-LSD, CF 25–397 and 29–712: effects on the metabolism of biogenic amines in the brain of the rat. Psychopharmacology (Berlin) 57:227–237

    Article  CAS  Google Scholar 

  • Carlsson A (1975) Receptor mediated control of dopamine metabolism. In: Usdin E, Bunney WE (eds) Pre-and postsynaptic receptors. Dekker, New York, pp 49–65

    Google Scholar 

  • Carlsson A (1978) Does dopamine have a role in schizophrenia? Biol Psychiatry 13(1): 3–21

    PubMed  CAS  Google Scholar 

  • Carlsson A (1985) Pharmacological properties of presynaptic dopamine receptor agonists. Psychopharmacology [Suppl] (Berlin) 2:31–38

    CAS  Google Scholar 

  • Carlsson A (1987) Historical perspective of the chemistry and pharmacological treatment of schizophrenia. In: Henn FA, DeLisi LE (eds) Neurochemistry and neuropharmacology of schizophrenia. Elsevier, Amsterdam (Handbook of schizophrenia, vol 2)

    Google Scholar 

  • Carlsson A (1988) Role of dopamine in the interaction between cortical and subcortical mechanisms. Psychopharmacology [Suppl] (Berlin) 96:49

    Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol (Copenh) 20:140–144

    Article  CAS  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxyty-ramin in brain. Science 127:471

    Article  PubMed  CAS  Google Scholar 

  • Carpenter WT Jr, Heinrichs DW, Alphs LD (1985) Treatment of negative symptoms. Schizophr Bull 11 (3):440–452

    PubMed  Google Scholar 

  • Cesarek Z, Nyman AK (1985) Differential response to amphetamine in schizophrenia. Acta Psychiatr Scand 71:523–528

    Article  Google Scholar 

  • Chiodo LA, Antelman SM (1980) Electroconvulsive shock: progressive dopamine autoreceptor subsensitivity independent of repeated treatment. Science 210:799–801

    Article  PubMed  CAS  Google Scholar 

  • Chouinard G, Jones B, Annabel L (1978) Neuroleptic-induced supersensitivity psychosis. Am J Psychiatry 135:1409–1410

    PubMed  CAS  Google Scholar 

  • Christensen A, Fjalland B, Moller-Neilsen I (1976) On the supersensitivity of dopamine receptors induced by neuroleptics. Psychopharmacology (Berlin) 48:1–6

    Article  CAS  Google Scholar 

  • Clark D, Hjorth S, Carlsson A (1985) Dopamine-receptor agonists: mechanisms underlying autoreceptor selectivity. I. Review of the evidence. J Neural Transm 62:1–52

    Article  PubMed  CAS  Google Scholar 

  • Colonna L, Petit M, Lepine JP (1978) Intérêt de la bromocriptine dans les schizophrénies dysthymiques. Encephale 4:115–117

    PubMed  CAS  Google Scholar 

  • Corsini GU, del Zompo M, Manconi S, Piccardi MP, Onali PL, Mangoni A (1977a) Evidence for dopamine receptors in the human brain mediating sedation and sleep. Life Sci 20:1613–1618

    Article  PubMed  CAS  Google Scholar 

  • Corsini GU, del Zompo M, Manconi S, Cianchetti C, Mangoni A, Gessa GL (1977b) Sedative, hypnotic and antipsychotic effects of low doses of apomorphine in man. Adv Biochem Psychopharmacol 16:645–648

    PubMed  CAS  Google Scholar 

  • Creese I (1987) Biochemical properties of CNS dopamine receptors. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 257–264

    Google Scholar 

  • Crow TJ (1980) Molecular pathology of schizophrenia: more than one disease process? Br Med J 280:1–9

    Article  Google Scholar 

  • Cutler NR, Jeste DV, Karoum F, Wyatt RJ (1982) Low-dose apomorphine reduces serum homovanillic acid concentrations in schizophrenic patients. Life Sci 30:753–756

    Article  PubMed  CAS  Google Scholar 

  • David K, Rosenberg G (1979) Is there a limbic system equivalent of tardive dyskinesia? Biol Psychiatry 14:699–703

    Google Scholar 

  • Davis J (1980) Antipsychotic drugs. In: Kaplan HI, Freedman AM, Sadock BJ (eds) Comprehensive textbook of psychiatry/III, 3rd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Deakin JF, Slater P, Simpson MD, Gilchrist AC, Skan WJ, Royston MC, Reynolds GP, Cross AJ (1989) Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J neurochem 52 (6): 1781–1786

    Article  PubMed  CAS  Google Scholar 

  • Delay J, Deniker P (1952) 38 cas de psychoses traités par la cure prolongée continué de 4568 RP. Ann Med Psychol (Paris) 110:364

    Google Scholar 

  • Di Chiara G, Corsini GU, Mereu GP, Tissari A, Gessa GL (1978) Self-inhibitory dopamine receptors: their role in the biochemical and behavioral effects of low doses of apomorphine. Adv Biochem Psychopharmacol 19:275–292

    PubMed  Google Scholar 

  • Douglas CJ (1900) Hypnotic action of apomorphine without nausea. Mercks Arch 11:212– 213

    Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38:1236

    Article  PubMed  CAS  Google Scholar 

  • Eriksson E, Svensson K, Clark D (1985) The putative autoreceptor agonist B-HT 920 decreases nigral dopamine firing rate and prolactin release in rat. Life Sci 36:1819–1827

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel F-A, Halldin C, Sedvall G (1988) Central D 2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45 (1) : 71–76

    Article  PubMed  CAS  Google Scholar 

  • Feldman F, Susselman S, Barrera SE (1945) A note on apomorphine as a sedative. Am J Psychiatry 102:403–405

    PubMed  CAS  Google Scholar 

  • Ferrier IN, Johnstone EC, Crow TJ (1984) Clinical effects of apomorphine in schizophrenia. Br J Psychiatry 144:341–348

    Article  PubMed  CAS  Google Scholar 

  • Fing H, Morgenstern R, Oelssner W (1984) Clozapine-a serotonine antagonist? Pharmacol Biochem Behav 20:513–517

    Article  Google Scholar 

  • Friedhoff AJ (1988) Dopamine as a mediator of a central stabilizing system. Neuropsychopharmacology 3 (1) : 189–191

    Article  Google Scholar 

  • Friedhoff AJ, Miller JC (1983) Clinical implications of receptor sensitivity modification. Annu Rev Neurosci 6:121–148

    Article  PubMed  CAS  Google Scholar 

  • Frye PE, Pariser SF, Kim MH, O’Shaugnessy RW (1982) Bromocriptine associated with symptom exacerbation during neuroleptic treatment of schizoaffective schizphrenia. J Clin Psychiatry 43(6):252–253

    PubMed  CAS  Google Scholar 

  • Gallager DW, Pert A, Bunney WE Jr (1978) Haloperidol-induced presynaptic supersensitivity is blocked by chronic lithium. Nature 273:309–312

    Article  PubMed  CAS  Google Scholar 

  • Garau L, Govoni S, Stefanini E, Trabucchi M, Spano PF (1978) Dopamine receptors: pharmacological and anatomical evidence indicate that two distinct dopamine receptor populations are present in the rat striatum. Life Sci 23:1745–1750

    Article  PubMed  CAS  Google Scholar 

  • Gattaz WF, Rost W, Huebner CK, Bauer K (1989) Acute and subchronic effects of low-dose bromocriptine in haloperidol-treated schizophrenics. Biol Psychiatry 25 (3): 247–255

    Article  PubMed  CAS  Google Scholar 

  • Gerlach J, Reisby N, Randrup A (1974) Dopaminergic hypersensitivity and cholinergic hypofunction in the pathophysiology of tardive dyskinesia. Psychopharmacologia 34:21

    Article  PubMed  CAS  Google Scholar 

  • Haase HJ (1955) Psychiatrische Erfahrungen mit Megaphen (largactil) und dem Rau-wolfiaalkaloid Serpasil unter dem Gesichtspunkt des psychomotirschen Parkinsonsyndroms. Nervenarzt 26(12): 507–510

    PubMed  CAS  Google Scholar 

  • Hinzen D, Hornykiewicz O, Kobinger W, Pichler L, Pifl C, Schingnitz G (1986) The dopamine autoreceptor agonist B-HT 920 stimulates denervated postsynaptic brain dopamine receptors in rodent and primate models of Parkinson’s disease: a novel approach to treatment. Eur J Pharmacol 131:75–86

    Article  PubMed  CAS  Google Scholar 

  • Hjorth S, Carlsson A (1987) Postsynaptic dopamine (DA) receptor stimulator properties of the putative DA autoreceptor-selective agonist B-HT 920 uncovered by co-treatment with the D 1-agonist SKF 38393. Psychopharmacology (Berlin) 93:534

    Article  CAS  Google Scholar 

  • Hollister LE, Kenneth LD, Berger PA (1980) Apomorphine in schizophrenia. Commun Psychopharmacol 4:277–281

    PubMed  CAS  Google Scholar 

  • Honigfeld G, Patin J, Singer J (1984) Clozapine: antipsychotic activity in treatment-resistant schizophrenics. Adv Ther 1:77–97

    Google Scholar 

  • Hornykiewicz O (1973) Parkinson’s disease: from brain homogenate to treatment. Fed Proc 32:183–190

    PubMed  CAS  Google Scholar 

  • Hunt JI, Singh H, Simpson GM (1988) Neuroleptic-induced supersensitivity psychosis: retrospective study of schizophrenic inpatients. J Clin Psychiatry 49:258–261

    PubMed  CAS  Google Scholar 

  • Janowsky A, Berger SP (1989) Clozapine inhibits [3H]MK-801 binding to the glutamate receptor-ion channel complex. Schizophr Res 2:179

    Article  Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Awouters F, Schellekens KHL et al. (1988) Pharmacology of risperidone (R 644766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 244:685–693

    PubMed  CAS  Google Scholar 

  • Jennewein HM, Bruckwick EA, Hanbauer I, Mierau J, Lovenberg W (1986) Evidence for a specific effect of B-HT 920, an azepine derivate, on tyrosine hydroxilase in the dopaminergic system of the rat. Eur J Pharmacol 123:363–369

    Article  PubMed  CAS  Google Scholar 

  • Jeste DV, Zalcman S, Weinberger DR, Cutler NR, Bigelow LB, Kleinman JE, Rogol A, Wyatt RJ (1983) Apomorphine response and subtyping of schizophrenia. Prog Neuro-psychopharmacol Biol Psychiatry 7:83–88

    Article  CAS  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. Arch Gen Psychiatry 45:789–796

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW, Caine DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kornhuber HH, Schmidt-Burgk W, Holzmüller B (1980) Low cerebrospinal fluid glutamate in schizophrenics and a new hypothesis on schizophrenia. Neurosci Lett 20:379–382

    Article  PubMed  CAS  Google Scholar 

  • Klieser E (1988) Experimental investigation to evaluate differential indications of neuroleptics and antidepressants. Habilitationsschrift, Heinrich-Heine University of Düsseldorf

    Google Scholar 

  • Klimke A, Klieser E (1990) Zur Wirksamkeit der neuroelektrischen Therapie (NET) bei pharmakotherapeutisch resistenten endogenen Psychosen. Fortschr Neurol Psychiatr (in press)

    Google Scholar 

  • Klieser E, Lehmann E, Tegeler J (1988) Experimental comparison of remoxipride, clozapine and haloperidol in the treatment of acute schizophrenia. Psychopharmacology [Suppl] (Berlin) 96:100

    Google Scholar 

  • Klieser E, Klimke A, Lehmann E (1990) Zur prädiktorischen Bedeutung einer neuroleptischen Probetherapie mit Haloperidol. In: Heinrich K, Klieser E, Lehmann E (eds) 9. Düsseldorfer Psychiatrie-Symposion. Schattauer, Stuttgart (in press)

    Google Scholar 

  • Klimke A, Klieser E, Strauss WH (1990) The new antipsychotic EMD 49980-results of an open clinical trial in the treatment of acute schizophrenia (Abstr). Regional Congress of the World Federation of Societies of Biological Psychiatry (WFSBP), Marokko

    Google Scholar 

  • Kornhuber J, Fischer EG (1982) Glutamate acid diethyl ester induces catalepsy in rats. A new model for schizophrenia? Neurosci Lett 34:325–329

    Article  PubMed  CAS  Google Scholar 

  • Krawiecka M, Goldberg D, Vaughan M (1977) A standardized assessment scale for rating chronic psychotic patients. Acta Psychiatr Scand 55:299–308

    Article  PubMed  CAS  Google Scholar 

  • Kuschinsky K (1975) Dopamine receptor sensitivity after repeated morphine administrations to rats. Life Sci 17:43–48

    Article  PubMed  CAS  Google Scholar 

  • Kuschinsky K, Hornykiewicz O (1974) Effects of morphine on striatal dopamine metabolism: possible mechanism of its opposite effect on locomotor activity in rats and mice. Eur J Pharmacol 26:41–50

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Seeman P (1978) Enhanced 3H-neuroleptic binding in postmortem schizophrenic brains. Soc Neurosci Abstr 4:496

    Google Scholar 

  • Lehmann J, Langer SZ (1983) The striatal cholinergic interneuron: synaptic target of dopaminergic terminals? Neuroscience 10 (4) : 1105–1120

    Article  PubMed  CAS  Google Scholar 

  • Levy MI, Davis EM, Mohs RC, Kendler KS, Mathé AA, Trigos G, Horvath TB, Davis KL (1984) Apomorphine and schizophrenia. Arch Gen Psychiatry 41:520–524

    Article  PubMed  CAS  Google Scholar 

  • Lipka G, Wiedemann K, Benkert O, Holsboer F (1988) Presynaptic dopamine receptor agonist (B-HT 920) treatment of schizophrenia. Psychopharmacology [Suppl] (Berlin) 96:333

    Google Scholar 

  • Ljungberg T (1979) Evidence that time-related changes in apomorphine stimulation determines the behaviour response. Neuropharmacology 18:327–334

    Article  CAS  Google Scholar 

  • McKinney WT, Moran EC, Kraemer GW, Prange AJ (1980) Long-term chlorpromazine in rhesus monkeys. Production of dyskinesias and changes in social behaviour. Psychopharmacology (Berlin) 72:35–39

    Article  CAS  Google Scholar 

  • Meltzer HY (1979) Clinical evidence for multiple dopamine receptors in man. Commun Psychopharmacol 3:457–470

    PubMed  CAS  Google Scholar 

  • Meltzer HY (1980) Relevance of dopamine autoreceptors for psychiatry, preclinical and clinical studies. Schizophr Bull 6:456–475

    PubMed  CAS  Google Scholar 

  • Meltzer HY (1989) Clinical studies on the mechanism of action of clozapine: the dopamineserotonin hypothesis of schizophrenia. Psychopharmacology [Suppl] (Berlin) 99 :S 18–27

    Article  Google Scholar 

  • Meltzer HY, Stahl M (1976) The dopamine hypothesis of schizophrenia: a review. Schizophr Bull 2:19

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Kolakowska T, Robertson A, Tricou BJ (1983) Effect of low-dose bromocriptine in treatment of psychosis: the dopamine autoreceptor-stimulation strategy. Psychopharmacology (Berlin) 81:37–41

    Article  CAS  Google Scholar 

  • Meltzer HY, Sommers AA, Luchins DJ (1986) The effect of neuroleptics and other psychotropic drugs on negative symptoms in schizophrenia. J Clin Psychopharmacol 6 (6): 329338

    Article  Google Scholar 

  • Mitchell PR, Doggett NS (1980) Modulation of striatal [3H]-glutamic acid release by dopaminergic drugs. Life Sci 26:2073–2081

    Article  PubMed  CAS  Google Scholar 

  • Mulder AH, Frankhuyzen AL, Schoffelmeer ANM (1988) Kappa-opioid receptor agonists as potent and selective inhibitors of dopamine release in rat neostriatum. Psychopharmacology [Suppl] (Berlin) 96:148

    Google Scholar 

  • Nieoullon A, Kerkerian L, Dusticier N (1982) Inhibitory effects of dopamine on high affinity uptake from rat striatum. Life Sci 30:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (1988) The human central nervous system. A synopsis and atlas, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nowycky MC, Roth RH (1977) Presynaptic dopamine receptors. Development of supersensitivity following treatment with fluphenazine decanoate. Naunyn Schmiedebergs Arch Pharmacol 300:247–254

    PubMed  CAS  Google Scholar 

  • Pichler L, Kobinger W (1981) Centrally mediated cardiovascular effects of B-HT 920, a hypotensive agent of the “clonidin type”. J Cardio vase Pharmacol 3:269

    Article  CAS  Google Scholar 

  • Pifl C, Hornykiewicz O (1988) Postsynaptic dopamine agonist properties of B-HT 920 as revealed by concomitant D 1-receptor stimulation. Eur J Pharmacol 146:189–191

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP (1989) Beyond the dopamine hypothesis. The neurochemical pathology of schizophrenia. Br J Psychiatry 155:305–316

    PubMed  CAS  Google Scholar 

  • Roth RH (1979) Dopamine autoreceptors: pharmacology, function and comparison with post-synaptic dopamine receptors. Commun Psychopharmacol 3:429–445

    PubMed  CAS  Google Scholar 

  • Rowlands GJ, Roberts PJ (1980) Activation of dopamine receptors inhibits calcium-dependent glutamate release from cortico-striatal terminals in vitro. Eur J Pharmacol 62:241–242

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ, Lobur W, Lovenberg W (1986) Inhibition of K+-stimulated [3H]dopamine and [14C]acetylcholine release by the putative dopamine autoreceptor agonist, B-HT 920. Naunyn Schmiedebergs Arch Pharmacol 334:377–382

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Fuxe K, Agnati LF, Gustafson JA (1978) Effects of bromocriptine on 3H-spiroperidol binding sites in rat striatum. Evidence for actions on dopamine receptors not linked to adenylate cyclase. Life Sci 23:465

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32:229–313

    PubMed  CAS  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    Article  PubMed  CAS  Google Scholar 

  • Serra G, Argiolas A, Klimek V, Fadda F, Gessa GL (1979) Chronic treatment with antidepressants prevents the inhibitory effect of small doses of apomorphine on dopamine synthesis and motor activity. Life Sci 25:415:424

    Article  Google Scholar 

  • Seyfried CA, Fuxe K, Wolf H-P, Agnati LF (1982) Demonstration of a new type of dopamine receptor agonist: an indolyl-3-butylamine. Actions at intact versus supersensitive dopamine receptors in the rat forebrain. Acta Physiol Scand 116:465

    Article  PubMed  CAS  Google Scholar 

  • Seyfried CA, Fuxe K, Wolf HP, Agnati LF (1983) Neurochemical and functional studies with EMD 23448, a novel dopamine agonist. Acta Pharm Suec [Suppl] 2:243

    Google Scholar 

  • Seyfried CA, Greiner HE, Haase AF, Böttcher H (1988) Ligand-binding profile of EMD 49980. A selectively presynaptic dopamine (D2) agonist with potent actions on 5-HT-systems. Psychopharmacology [Suppl] (Berlin) 96:336

    Google Scholar 

  • Seyfried CA, Greiner HE, Haase AF (1989) Biochemical and functional studies on EMD 49980: a potent, selectively presynaptic D-2 dopamine agonist with actions on serotonin systems. Eur J Pharmacol 160:31–41

    Article  PubMed  CAS  Google Scholar 

  • Smith RC, Tamminga C, Davis JM (1977) Effect of apomorphine on schizophrenic symptoms. J Neural Transm 40:171–176

    Article  PubMed  CAS  Google Scholar 

  • Steck H (1954) Le syndrome extra-pyramidal et diencéphalique au cours des traitements au largactil et au serpasil. Ann Med Psychol (Paris) 112(2):737–743

    CAS  Google Scholar 

  • Stein L, Wise CD (1971) Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science 171:1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Strauss JS, Carpenter WT Jr (1972) Six-hydroxy-dopamine, noradrenergic reward, and schizophrenia. Science 175:921–922

    Google Scholar 

  • Syvälahti EKG, Säkö E, Scheinin M, Pihlajamäki P, Hietala J (1986) Effects of intravenous and subcutaneous administration of apomorphine on the clinical symptoms of chronic schizophrenics. Br J Psychiatry 148:204–208

    Article  PubMed  Google Scholar 

  • Tamminga CA, Schaffer MH (1979) Treatment of schizophrenia with ergot derivatives. Psychopharmacology (Berlin) 66:239–242

    Article  CAS  Google Scholar 

  • Tamminga CA, Schaffer MH, Smith RC, Davis JM (1978) Schizophrenic symptoms improve with apomorphine. Science 200:567–568

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA, Gotts MD, Thaker GK, Alphs LD, Foster NL (1986) Dopamine agonist treatment of schizophrenia with N-propylnorapomorphine. Arch Gen Psychiatry 43:398–402

    Article  PubMed  CAS  Google Scholar 

  • Tandon R, Greden JF (1989) Cholinergic hyperactivity and negative schizophrenic symptoms. A model of cholinergic/dopaminergic interactions in schizophrenia. Arch Gen Psychiatry 46 (8): 745–753

    Article  PubMed  CAS  Google Scholar 

  • Van der Weide J, Tendijck MEC, Tepper PG, DeVries JB, Dubocovich ML, Horn AS (1988) The enantiomers of the D-2 dopamine receptor agonist N-0437 discriminate between pre-and postsynaptic dopamine receptors. Eur J Pharmacol 146:319

    Article  PubMed  Google Scholar 

  • Van Rossum JM (1966) The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 160:492–494

    PubMed  Google Scholar 

  • Wiedemann K, Benkert O, Holsboer F (1989) B-HT 920-a novel dopamine autoreceptor agonist in the treatment of patients with schizophrenia. Pharmacopsychiatry 22:221

    Google Scholar 

  • Wiedemann K, Benkert O, Holsboer F (1990) B-HT 920-a novel dopamine autoreceptor agonist in the treatment of patients with schizophrenia. Pharmacopsychiatry 23:50–55

    Article  PubMed  CAS  Google Scholar 

  • Wöller W, Tegeler J (1983) Späte extrapyramidale Hyperkinesen. Klinik-Prävalenz-Pathophysiologie. Fortschr Neurol Pschiat 51:131–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klimke, A., Klieser, E. (1991). The Treatment of Positive and Negative Schizophrenic Symptoms with Dopamine Agonists. In: Marneros, A., Andreasen, N.C., Tsuang, M.T. (eds) Negative Versus Positive Schizophrenia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76841-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76841-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76843-9

  • Online ISBN: 978-3-642-76841-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics