Skip to main content

Animal Models of Normal and Leukemic Human Hematopoiesis

  • Conference paper
Modern Trends in Human Leukemia IX

Part of the book series: Haematology and Blood Transfusion / Hämatologie und Bluttransfusion ((HAEMATOLOGY,volume 35))

  • 52 Accesses

Abstract

Over the last 40 years the hematopoietic system has provided many of the important paradigms that guide our understanding of stem cell function. Much of our knowledge of the regulation of the hematopoietic system is derived from experiments in the mouse; these studies have involved identification of various classes of progenitor cells, growth factors that stimulate growth and differentiation, and molecular events that underlie the abnormalities that occur in diseases such as leukemia. This information has derived largely from the development of in vivo transplantation assays for normal stem cells and the ability to establish and grow leukemic cells in vitro and in vivo [1]. In contrast, our understanding of the biology of the human hematopoietic system has suffered relative to that in the mouse because of the lack of similar assays for normal stem cells and leukemic cells. Normal and leukemic human cells often appear to have complex growth factor requirements that are not easy to provide in short- or long-term cultures. Furthermore, the difficulties in growing primary human leukemic cells in culture suggest that there are selective processes that may result in alterations of the properties of such cells over time and the resultant cell Unes do not accurately reflect the original disease. In an attempt to develop in vivo animal models for human leukemic cells, a large body of literature has accumulated over the past 20 years on the growth of human tumor xenografts in immune-deficient nude mice [2]. However, the growth of human leukemic cells as an ascites or solid subcutaneous tumor in nude mice does not reflect the normal course of the disease in humans. In addition to leukemic cells, normal human hematopoietic cells have also been introduced into nude mice directly or in diffusion chambers. The transplantation of human bone marrow directly into mice generally yielded inconclusive results [3], while the implantation of diffusion chambers demonstrated the development of human progenitors for as long as 28 days in vivo although it was not possible to distinguish between persistence of progenitors and engraftment of stem cells [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Till JE, McCulloch EA (1980) Hemopoietic stem cell differentiation. Biochim Bio-phys Acta 605:431–459

    CAS  Google Scholar 

  2. Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–226

    PubMed  CAS  Google Scholar 

  3. Barr RD, Whang PJ, Perry S (1975) Hemopoietic stem cells in human peripheral blood. Science 190:284–285

    Article  PubMed  CAS  Google Scholar 

  4. Pojda Z, Szczylik C, Wiktor-Jedrzejczak W (1987) Multiple lineage colony growth from human marrow in plasma clot diffusion chambers. Exp Hematol 15:922–927

    PubMed  CAS  Google Scholar 

  5. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hema-tolymphoid differentiation and function. Science 241:1632–1639

    Article  PubMed  CAS  Google Scholar 

  6. Kamel-Reid S, Dick JE (1988) Engraft-ment of immune-deficient mice with human hematopoietic stem cells. Science 242:1706–1709

    Article  PubMed  CAS  Google Scholar 

  7. Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259.

    Article  PubMed  CAS  Google Scholar 

  8. Kamel-Reid S, Letarte M, Sirard C, Doedens M, Grunberger T, Fulop GM, Freedman MH, Phillips RA, Dick JE (1989) A model of human acute lymphoblastic leukemia in immune-deficient scid mice. Science 246:1597–1600

    Article  PubMed  CAS  Google Scholar 

  9. Reddy S, Piccione D, Takita H, Bankert RB (1987) Human lung tumor growth established in the lung and subcutaneous tissue of mice with severe combined immunodeficiency. Cancer Res 47:2456–2460

    PubMed  CAS  Google Scholar 

  10. Bankert R, Umemoto T, Sugiyama Y, Chen F, Repasky E, Yokota S (1989) Human lung tumors, patient’s peripheral blood lymphocytes and tumor infiltrating lymphocytes propagated in scidmice. Curr Top Microbiol Immunol 152:201–210

    Article  PubMed  CAS  Google Scholar 

  11. Cannon MJ, Pisa P, Fox RI, Cooper NR (1990) Epstein-Barr virus induces aggressive lymphoproliferative disorders of human B cell origin in SCID/hu chimeric mice. J Clin Invest 85:1333–1337

    Article  PubMed  CAS  Google Scholar 

  12. Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM (1988) Infection of the SCID-hu mouse by HIV-1. Science 242:1684–1686

    Article  PubMed  CAS  Google Scholar 

  13. McCune JM, Namikawa R, Shih CC, Rabin L, Kaneshima H (1990) Suppression of HIV infection in AZT-treated SCID-hu mice. Science 247:564–566

    Article  PubMed  CAS  Google Scholar 

  14. Mosier D, Gulizia R, Baird S, Spector S, Spector D, Kipps T, Fox R, Carson D, Cooper N, Richman D, Wilson D (1989) Studies of HIV infection and the development of Epstein-Barr virus-related B cell lymphomas following transfer of human lymphocytes to mice with severe combined immunodeficiency. Curr Top Microbiol Immunol 152:195–199

    Article  PubMed  CAS  Google Scholar 

  15. Krams SM, Dorshkind K, Gershwin ME (1989) Generation of biliary lesions following transfer of human lymphocytes into scid mice. J Exp Med 170:1919

    Article  PubMed  CAS  Google Scholar 

  16. Duchosal M, McConahey P, Robinson C, Dixon F (1990) Transfer of human systemic lupus erythematosus in severe combined immunodeficient (SCID) mice. J Exp Med 172:985–988

    Article  PubMed  CAS  Google Scholar 

  17. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  PubMed  CAS  Google Scholar 

  18. Dorshkind K, Pollack SB, Bosma MJ, Phillips RA (1985) Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J Immunol 134:3798–3801

    PubMed  CAS  Google Scholar 

  19. Fulop G, Phillips R (1990). The scid mutation in mice causes a general defect in radiation repair. Nature 347:479–482

    Article  PubMed  CAS  Google Scholar 

  20. Andriole G, Mule J, Hansen C, Linehan W, Rosenberg S (1985) Evidence that lymphokine-activated killer cells and natural killer cells are distinct based on an analysis of congenitally immunodeficient mice. J Immunol 135:2911–2913

    PubMed  CAS  Google Scholar 

  21. Roder J (1979) The beige mutation in the mouse. I. A stem cell predetermined impairment in natural killer cell function. J Immunol 123:2168–2173

    PubMed  CAS  Google Scholar 

  22. Scher I, Steinberg AD, Berning AK, Paul WE (1975) X-linked B-lymphocyte immune defect in CBA/N mice. II. Studies of the mechanisms underlying the immune defect. J Exp Med 142:637–650

    Article  PubMed  CAS  Google Scholar 

  23. Karagogeos D, Rosenberg N, Wortis HH (1986) Early arrest of B cell development in nude, X-linked immune-deficient mice. Eur J Immunol 16:1125–1130

    Article  PubMed  CAS  Google Scholar 

  24. Fodstad O, Hansen CT, Cannon GB, Statham CN, Lichtenstein GR, Boyd MR (1984) Lack of correlation between natural killer activity and tumor growth control in nude mice with different immune defects. Cancer Res 44:4403–4408

    PubMed  CAS  Google Scholar 

  25. Talmadge J, Meyers K, Prieur D, Starkey J (1980) Role of NK cells in tumour growth and metastasis in beige mice. Nature 284:622–624

    Article  PubMed  CAS  Google Scholar 

  26. Gluck U, Zipori D, Wetzler M, Berrebi A, Shaklai M, Drezen O, Zaizov R, Luria D, Marcelle C, Stark B, Umiel T (1989) Longterm proliferation of human leukemia cells induced by mouse stroma. Exp Hematol 17:398–404

    PubMed  CAS  Google Scholar 

  27. Dick JE, Magli MC, Phillips RA, Bernstein A (1986) Genetic manipulation of hematopoietic stem cells with retrovirus vectors. Trends Genet 2:165–170

    Article  CAS  Google Scholar 

  28. Laneuville P, Chang W, Kamel-Reid S, Fauser AA, Dick JE (1988) High-efficiency gene transfer and expression in normal human hematopoietic cells with retrovirus vectors. Blood 71:811–814

    PubMed  CAS  Google Scholar 

  29. Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002

    Article  PubMed  CAS  Google Scholar 

  30. Greaves MF (1986) Differentiation-linked leukemogenesis in lymphocytes. Science 234:697–704

    Article  PubMed  CAS  Google Scholar 

  31. Dick JE, Kamel-Reid S, Murdoch B, Doedens M (1991) Gene transfer into normal human hematopoietic cells using in vitro and in vivo assays. Blood 78:1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dick, J.E. (1992). Animal Models of Normal and Leukemic Human Hematopoiesis. In: Neth, R., Frolova, E., Gallo, R.C., Greaves, M.F., Afanasiev, B.V., Elstner, E. (eds) Modern Trends in Human Leukemia IX. Haematology and Blood Transfusion / Hämatologie und Bluttransfusion, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76829-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76829-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54360-2

  • Online ISBN: 978-3-642-76829-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics