Skip to main content

Abstract

The standard situation is where the researcher has a DNA sequence which may or may not code for a known gene product. The sequence is read into a frame, called an open reading frame or ‘orf’ consisting of a long run of amino acid codons with no terminator codon. The problem is usually to find if this unidentified reading frame or ‘urf’ really codes for a protein, and to find if this protein is known to exist in nature. Two approaches to this problem exist. Firstly one can do computer searching. Or secondly one can use antibodies raised against synthetic peptides “patterned on the sequence of the expected gene product” (Doolittle, 1986). This section will introduce the first method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argos P., 1987, “A sensitive procedure to compare amino acid sequences”, J. Molec. Biol., 193, 385–396.

    Article  PubMed  CAS  Google Scholar 

  • Boswell D.R., and Lesk A.M., 1988, Sequence comparison and alignment the measurement and interpretation of sequence similarity, 161–178 in Lesk A.M., Computational Molecular Biology: Sources and methods for sequence analysis, Oxford University Press, Oxford.

    Google Scholar 

  • Brown J.P., Hewick R.M., Hellstrom I., Hellstrom K.E., Doolittle R.F., and Dreyer W.J., 1982, “Human melanoma-associated antigen p97 is structurally and functionally related to transferrin”, Nature, 296, 171–173.

    Article  PubMed  CAS  Google Scholar 

  • Brutlag D.L., and Kristofferson D., 1989, BIONET: an NIH computer resource for molecular biology, 287–293 in Colwell R.R., Biomolecular data: a resource in transition, Oxford University Press, Oxford.

    Google Scholar 

  • Doolittle R.F., 1981, “Similar amino acid sequences: chance or common ancestry”, Science, 214, 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle R.F., 1986, Of URFS and ORFS: a primer on how to analyse derived amino acid sequences, University Science Books, Mill Valley, California.

    Google Scholar 

  • Kabsch W., and Sander C., 1983, “How good are predictions of protein secondary structure?”, FEBS Lett., 155, 179–182.

    Article  PubMed  CAS  Google Scholar 

  • Karlin S., and Altschul S.F., 1990, “Methods for assessing the statistical significance of molecular sequnce features by using general scoring schemes”, Proc. Natl. Acad. Sci. U.S.A., 87, 2264–2268.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins A.R., 1987, “The complex Arom locus of Aspergillus nidulans; Evidence for multiple gene fusions and convergent evolution”, Current Genetics, 11, 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Lipman D.J., and Pearson W.R., 1985, “Rapid and sensitive protein similarity searches”, Science, 227, 1435–1441.

    Article  PubMed  CAS  Google Scholar 

  • Pearson W.R., 1990, Rapid and sensitive comparison with FASTP and FASTA, 63–129 in Doolittle R.F., Molecular evolution: computer analysis of protein and nucleic acid sequences, Methods in Enzymology, 183, Academic Press, New York.

    Google Scholar 

  • Pervaiz S., and Brew K., 1985, “Homology of beta-lactoglobin, serum retinol-binding protein, and protein H.C.”, Science, 228, 335–337.

    Article  PubMed  CAS  Google Scholar 

  • Rooman M.J., and Wodak S.J., 1988, “Identification of predictive sequence motifs limited by protein structure data base size”, Nature, 335, 1, 45–49.

    Article  PubMed  CAS  Google Scholar 

  • Wierenga R.K., and Hol W.J., 1983, “Predicted nucleotide-binding properties of p21 protein and its cancer-related properties”, Nature, 302, 842–844.

    Article  PubMed  CAS  Google Scholar 

  • Wilbur W.J., and Lipman D.J., 1983, “Rapid similarity searches of nucleic acid and protein data banks”, Proc. Nat. Acad. Sci. U.S.A., 80, 726–730.s

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sillince, J.A.A., Sillince, M. (1991). Sequence Searching. In: Molecular Databases for Protein Sequences and Structure Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76809-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76809-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76811-8

  • Online ISBN: 978-3-642-76809-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics