Skip to main content

Some Lectures on Modal Logic

  • Conference paper
Logic, Algebra, and Computation

Part of the book series: NATO ASI Series ((NATO ASI F,volume 79))

Abstract

An exposition of some modal logics useful for teaching and research in computer science. §1. Preface §2. Propositional modal logic §3. Modal frames §4. Propositional tableaux §5. Modal axioms and their frame semantics 96. Modal predicate tableaux with constant domains §7. Autoepistemic logic §8. Nonmonotonic reasoning §9. Classical concurrent dynamic logic §10. Intuitionistic concurrent dynamic logic.

Research supported by NSF grant DMS-89-02797 and ARO contract DAAG 29-85-C-0018

Thanks to Prof. Wiktor Marek and to Prof. Andre Deutz for their help in the preparation of this paper. The material in §8 has been substituted for the original exposition and is taken from Marek-Nerode-Remmel [1990].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • M. Abadi and Z. Manna, “Modal theorem proving”, LCNS 230, 172–188.

    Google Scholar 

  • K. Apt, H. Blair, A. Walker [1986], “Towards a theory of declarative knowledge”, Proc. 1986 Workshop on the Foundations of Deductive Databases and Logic Programming.

    Google Scholar 

  • L. Banachowski, A. Kreczmar, G. Mirkowska, H. Rasiowa, A. Salwicki, “An introduction to algorithmic logic”, in Mathematical Foundations of Computer Science (A. Mazurkiewicz and Z. Pawlak, eds.), Banach Centre Publications, Polish Scientific Publishers, Warsaw.

    Google Scholar 

  • H. Barringer [1985], A Survey of Verification Techniques for Parallel Programs, LCNS 191, Springer—Verlag, Berlin.

    MATH  Google Scholar 

  • M. Ben Ari [1980], “Temporal logic proofs of concurrent programs”, Tech. Rpt 80–44, Tel Aviv, Israel.

    Google Scholar 

  • M. Ben Ari, J. Y. Halpern, and A. Pnueli [1982], “Deterministic propositional dynamic logic: finite models, complexity, and completeness”, J. Comp. Syst. Sci. 25, 402–417.

    MATH  Google Scholar 

  • M. Bozic, K. Dosen [1984], “Models for normal intuitionistic logics”, Studia Logica 43, 217–245.

    MATH  MathSciNet  Google Scholar 

  • R. Brachman, H. Levesque, R. Reiter, eds. [1989], First Conference on Principles of Knowledge Representation and Reasoning, Toronto, Canada, May 15–18, 1989.

    MATH  Google Scholar 

  • A. Brown [1985], “Modal propositional semantics for reason maintenance systems”, Proc. 9th IJCAI, 178–184.

    Google Scholar 

  • R. Burstall [1972], “Some techniques for proving correctness of programs which alter data structures”, Machine Intelligence 7, 23–50.

    MATH  Google Scholar 

  • R. Burstall [1974], “Program proving as hand simulation with a little induction”, Information Processing 74, 308–312.

    MathSciNet  Google Scholar 

  • B. F. Chellas [1980], Modal Logic: An Introduction, Cambridge University Press.

    MATH  Google Scholar 

  • K. L. Clark [1978], “Negation as failure”, in Logic and Databases, Plenum Press, N. Y., 293–322.

    Google Scholar 

  • E. Clark, E. Emerson, A. Sistla, [1986], “Automatic verification of finite state concurrent Systems using temporal logic specifications” ACM Trans, on Programming Languages and Systems, 8, 244–263.

    Google Scholar 

  • J. de Kleer, “An assumption-based TMS”, Art. Intell. 28, 127–162.

    Google Scholar 

  • J. de Kleer, “Extending the ATMS”, Art. Intell. 28, 163–196.

    Google Scholar 

  • J. Doyle [1979], “A truth maintenance system”, Art. Intell., 231–272.

    Google Scholar 

  • K. Dozen [1985], “Models for stonger normal intuitionistic modal logics”, Studia Logica 44, 39–70.

    MathSciNet  Google Scholar 

  • C. Elkin [1989], “Logical characterization of nonmonotonic TMS’s”, Math. Found. Comp. Science 1989 (A. Kreczmar and G. Mirkowska, eds.), Springer-Verlag, Berlin, 218–224.

    Google Scholar 

  • E. Engeler [1967], “Algorithmic properties of structures”, Math. Systems Theory 1, 183–195.

    MATH  MathSciNet  Google Scholar 

  • E. Engeler [1968], Languages: Automata and Structures, Markham, Chicago.

    MATH  Google Scholar 

  • E. Engeler [l975], “On the solvability of algorithmic problems”, Logic Colloquium’73 (H. E. Rose and J. C. Shepherdson, eds), Studies in Logic vol. 80, North-Holland, 231–251.

    Google Scholar 

  • D. Etherington [1987], “Relating default logic and circumscription”, Proc. IJCAI-87.

    Google Scholar 

  • D. Etherington [l988], Reasoning with Incomplete Information, Pitman, London, 1988.

    Google Scholar 

  • W. Ewald [1986], “Intuitionistic tense and modal logic”, J.S.L. 51, 166–179.

    MATH  MathSciNet  Google Scholar 

  • R. Fagin and J. Y. Halpern [1988], “Belief, awareness, and limited reasoning”, Art. Intell. 34, 39–76.

    MathSciNet  Google Scholar 

  • M. Fitting [1983], Proof Methods for Modal and Intuitionistic Logics, D. Reidel, Dordrecht, Holland.

    MATH  Google Scholar 

  • M. J. Fischer and R. E. Ladner [1979], “Propositional dynamic logic of regular programs”, J. Comp. Syst. Sci. 18, 194–211.

    MATH  MathSciNet  Google Scholar 

  • F. B. Fitch [1949], “Intuitionistic modal logic with quantifiers”, Portugalia Mathematixca 7, 113–118.

    MathSciNet  Google Scholar 

  • R. Floyd [1967], “Assigning meaning to programs”, Proc. Symp. in Applied Math., AMS 19, 19–32.

    MathSciNet  Google Scholar 

  • M. Font [1986], “Modality and possibility in some intuitionistic modal logics”, Notre Dame Journal of Formal Logic 27, 533–546.

    MATH  MathSciNet  Google Scholar 

  • D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi [1980], “On the temporal analysis of fairness”, Proc. 7th ACM POPL, Las Vegas, 163–173.

    Google Scholar 

  • D. Gabbay [1981], Semantical investigations in Heyting’s intuituionistic logic, Reidel, Dordrecht.

    Google Scholar 

  • A. Galton, ed. [1987], Temporal Logics and their Applications, Academic Press, N.Y.

    Google Scholar 

  • P. Gärdenfors [1988], Knowledge in Flux, MIT Press, Bradford Books, Cambridge, MA.

    MATH  Google Scholar 

  • C. Geissler and K. Konolige, “A resolution method for quantified modal logics of knowledge and Belief”, in J. Y. Halpern [1986]. 309–324.

    Google Scholar 

  • M. Gelfond, H. Przymusinska, and T. Przymusinska [1986], “The stable model semantics for logic programming”, in Proc. of the 5th Logic Programming Symposium, 1070–1080 (R. Kowalski and K. Bowen, eds.), Assoc. for Logic Programming, MIT Press, Cambridge, Mass.

    Google Scholar 

  • M. Gelfond [1987], “On stratified autoepistemic theories”, Proc. AAAI-87, Amer. Assoc. for Art. Intell., Morgan-Kaufmann, Los Altos, CA, 1987.

    Google Scholar 

  • M. Gelfond [1989], “Autoepistemic logic and the formalization of commonsense reasoning”, LNCS 346, 176–186.

    MathSciNet  Google Scholar 

  • M. Ginsberg [1987], Readings in Nonmonotonic Reasoning, Morgan Kaufmann, Los Altos, Calif.

    Google Scholar 

  • R. Goldblatt [1982], Axiomatizing the Logic of Computer Programming, LCNS 130, Springer—Verlag, Berlin.

    Google Scholar 

  • R. Goldblatt [1982], “The semantics of Hoare’s iteration rule”, Studia Logica 41, 141–158.D. R.

    MATH  MathSciNet  Google Scholar 

  • R. Goldblatt [1987], Logics of Time and Computation, CSLI Lecture Notes 7, Center for the Study of Language and Information, Stanford, 1987.

    MATH  Google Scholar 

  • B. Hailpern [1982], “Verifying Concurrent Processes using Temporal Logic”, LCNS 68, Springer Verlag, Berlin.

    MATH  Google Scholar 

  • J. Y. Halpern and Y. O. Moses, [1984], “Knowledge and common knowledge in a distributed environment”, 3rd ACM Conference on the Principles of Distibuted Computing, 50–61. (Revised as IBM RJ 4421, 1984).

    Google Scholar 

  • J. Y. Halpern and Y. Moses, [1984], “Towards a theory of knowledge and ignorance”, Workshop on Nonmonotonic reasonong, Mohonk Mountain House, New Paltz, New York (October 17–19, 1984), available from the AAAI Office, Menlo Park, California.

    Google Scholar 

  • J. Y. Halpern and Y. O. Moses [1985], “A guide to modal logics of knowledge and belief”, in Proc. IJCAI, Los Angeles, 50–61.

    Google Scholar 

  • J. Y. Halpern (Ed.) [1986] “Theoretical aspects of reasoning about knowledge”, Proc. 1986 Conf.

    Google Scholar 

  • S. Hanks and D. McDermott [1986], “Default reasoning, nonmonotone logics, and the frame problem”, Proc. 5th Nat. Conf. on AI, Morgan-Kaufmann, 328–333.

    Google Scholar 

  • S. Hanks and D. McDermott [1986], “Nonmonotonic logic and temporal projection”, Art. Intell. 33, 379–412.

    MathSciNet  Google Scholar 

  • D. Harel, A. Meyer, and V. R. Pratt [1977], “Computability and completeness in logics of programs”, Proc. ACM STOCS, Boulder, Colorado, 261–268.

    Google Scholar 

  • D. Harel [1979]. “First Order Dynamic Logic”, LCNS 68, Springer Verlag, Berlin.

    MATH  Google Scholar 

  • D. Harel [1983/5], “Dynamic Lode”, in Handbook of Philosophical Logic, vol. I—III, (D. Gabbay and F. Guenthner, eds), D. Reidel, Dordrecht.

    Google Scholar 

  • J. Hintikka [1962], Knowledge and Belief, Cornell University Press, Ithaca, N. Y.

    Google Scholar 

  • C. Hoare [1969], “An axiomatic basis for computer programming”, Comm. ACM 12, 576–583.

    MATH  Google Scholar 

  • G. E. Hughes and M. J. Cresswell [1968], Introduction to Modal Logic, Methuen, London.

    MATH  Google Scholar 

  • G. E. Hughes and M. J. Cresswell [1984], A Comnpanion to Modal Logics Methuen, London.

    Google Scholar 

  • S. Ranger [1957], “A note on quantification and modalities”, Theoria 23, 133–4.

    Google Scholar 

  • K. Konolige [1986], A Deductive Model of Belief, Morgan Kaufmann, Inc., Los Altos, California.

    Google Scholar 

  • K. Konolige [1988], “On the relation between default logic and autoepistemic logic”, Artificial Intelligence 35, 343–382.

    MATH  MathSciNet  Google Scholar 

  • D. Kozen and R. Parikh [1982], “An elementary proof of the completeness of PDL”, Theor. Comp. Sci. 14 (1981), 113–118.

    MathSciNet  Google Scholar 

  • D. Kozen and J. Tiuryn [1989], “Logic of programs”, Cornell University Department of Computer Science Report no. 89–962.

    Google Scholar 

  • S. Kripke [1959], “A completeness theorem in modal logic”, J. Symb. Logic 24, 1–15.

    MATH  MathSciNet  Google Scholar 

  • S. Kripke [1963], “Semantical considerations on modal logic”, Acta Phil. Fennica 16, 83–04.

    MATH  MathSciNet  Google Scholar 

  • S. Kripke [1963], “Semantic analysis of modal logic I: normal propositional calculi”, Zeit. Math. Logik Grund. Math. 9, 67–96.

    MATH  MathSciNet  Google Scholar 

  • S. Kripke [1971], “Semantical considerations on modal logic”, Reference and Modality (L. Linsky, ed.), Oxford University Press, London, 63–72.

    Google Scholar 

  • R. E. Ladner [1977], “The computational complexity of provability in systems of modal propositional calculus”, SIAM J. of Computing 6:3 467–480.

    MATH  MathSciNet  Google Scholar 

  • H. J. Levesque [1981], “The interaction with incomplete knowledge bases: a formal treatment”, Proc. 7th IJCAI, University of British Columbia, Vancouver, B. C. (August 24–28, 1981). 240–245.

    Google Scholar 

  • V. Lifschitz [1984], “Some results on circumscription”, Proc. Non-monotonic Reasoning Workshop of AIII, New Paltz, NY., 151–164.

    Google Scholar 

  • V. Lifschitz [1989], “The Mathematics of nonmonotonic reasoning”, Proc. LICS-89, IEEE Computer Society.

    Google Scholar 

  • V. Lifshitz [1989], “Circumscriptive theories: a logic-based framework for knowledge representation”, J. Phil. Logic 17.

    Google Scholar 

  • A. Loperic, “On the method of valuations in modal logic”, Math. Logic Proc. 1st Brazilian Conf.

    Google Scholar 

  • McDermott and J. Doyle [1980], “Non-Monotonic Logic I”, Art. Intell. 13, 41–72.

    MATH  MathSciNet  Google Scholar 

  • J. McCarthy [1977], “Epistemological problems of artificial intelligence”, Proc. 5th IJCAI, Cambridge, Mass., 1038–1044.

    Google Scholar 

  • J. McCarthy [1980], Circumscription-a form of non-monotonic reasoning, J. Art. Intell. 13;27–39.

    MATH  MathSciNet  Google Scholar 

  • J. McCarthy [1986], “Applications of circumscription to formalize commonsense reasoning”, Art. Intell. 28.

    Google Scholar 

  • J. McCarthy and P. J. Hayes [1969], “Some philosophical problems from the standpoint of artificial intelligence”, Machine Intelligence 4 (B. Meltzer and. D. Michie, eds.), Edinburgh University Press, 463–502.

    Google Scholar 

  • D. McDermott [1982], “Non-monotonic logic II: Nonmonotonic modal theories”, J. ACM 29, 33–57.

    MATH  MathSciNet  Google Scholar 

  • D. McDermott and J. Doyle [1980], “Non-monotonic logic I”, Artificial Intelligence 13, (Nos. 1, 2), 41–72.

    Google Scholar 

  • D. McDermott [1982], Non-monotonic logic II: nonmonotonic modal theories”, JACM 29, (no. 1), 33–57.

    MATH  MathSciNet  Google Scholar 

  • Z. Manna and A. Pnueli [1981], “Verification of concurrent programs: the temporal framework”, in R. S. Boyer and J. S. Moore, eds., The Correctness Prooblem in Computer Science, Academic Press, London, 215–273.

    Google Scholar 

  • W. Marek [1986], “Stable theories in autoepistemic logic”, Fundamenta Informaticae.

    Google Scholar 

  • W. Marek and A. Nerode [1990], “A decision method for default logic”, Mathematical Science Institute Report, Cornell University, Ithaca, N. Y.

    Google Scholar 

  • W. Marek and A. Nerode and J. B. Remmel [1990], “Non-Monotonic Rule Systems I, II”, Mathematics and Artificial Intelligence, to appear. (Abstract in IEEE LICS 90, June, 1990)

    Google Scholar 

  • W. Marek and V. Subrahmanian [1989], “The relationship between logic program semantics and non—monotonic reasoning”, Proc. 6th ICLP.

    Google Scholar 

  • W. Marek and M. Truszczynski [1988], “Autoepistemic logic”, Technical report 115–88, Computer Science Department, University of Kentucky.

    Google Scholar 

  • W. Marek and M. Truszczynski [1989], “Stable semantics for logic programs and default theories”, to appear in JACM

    Google Scholar 

  • W. Marek and M. Truszczynski [1989], “Relating autoepistemic and default logics”, in Brachmann et al. [1989].

    Google Scholar 

  • M. Minsky [1975], “A framework for representing knowledge”, The Psychology of Computer Vision, (P. Winston, ed.), McGraw-Hill, 211–277.

    Google Scholar 

  • G. Mirkowska [1979], “Model existence theorem in algorithmic logic with non-deterministic programs”, Fundamenta Informaticae, series iv, vol. III.2, 157–170.

    MathSciNet  Google Scholar 

  • G. Mirkowska [1980], “Algorithmic logic with non-deterministic programs”, Fundamenta Informaticae, series IV, vol. III.1, 45–64.

    MathSciNet  Google Scholar 

  • R. C. Moore [1983], “Semantical considerations on nonmonotonic logic”, Proc. 8th JCAI, Karlsruhe, West Germany, 272–279.

    Google Scholar 

  • R. C. Moore [1983b], “Semantical considerations on nonmonotonic logic”, SRI AI Center Tech. note 284 (June, 1983), SRI International, Menlo Park, Calif.

    Google Scholar 

  • R. C. Moore [1984], “Possible world semantics for autoepistemic logic”, in Proceedings of the nonmonotonic reasoning workshop, (October, 1984), New Paltz, N. Y. Also in Readings on non-monotonic reasoning, M. Ginsberg, ed., Morgan Kauffmann, 1987, 137–142.

    Google Scholar 

  • R. C. Moore [1985], “Semantical considerations on nonmonotonic logic”, Artificial Intelligence 25 (1).

    Google Scholar 

  • R. C. Moore [1988], “Autoepistemic logic”, in Smets et al.

    Google Scholar 

  • P. H. Morris [1989], “Autoepistemic stable closure and contradiction resolution”, LNCS 346, 60–73.

    Google Scholar 

  • A. Nerode [1990], “Some Lectures on Intuitionistic Logic”, Italian Summer School in Logic and Computer Science 1988, Montecatini Volume, Springer-Verlag Lecture Notes in Mathematics, to appear in 1990.

    Google Scholar 

  • A. Nerode and D. Wijesekera [1990], “Constructive Concurrent Dynamic Logic”, Mathematics and Artificial Intelligence, to appear in 1990.

    Google Scholar 

  • I. Niemalä [1988], “Decision method for autoepistemic logic”, Proc. 9th Inter. Conf. on Automated Deduction, Argonne, Ill.

    Google Scholar 

  • I. Niemalä [1988], “Autoepistemic predicate logic”, Research report A-6, Digital Systems Laboratory, Helsinki University of Technology, Espoo, Finland.

    Google Scholar 

  • H. Ono [1977], “On some intuitionistic modal logics” Publications of the Institute of Mathematical Sciences of Kyoto University 13, 687–722.

    MATH  Google Scholar 

  • R. Parikh [1978], “The completeness of propositional dynamic logic”, Mathematical Foundations of Computer Science 1978, LCNS 64, 403–415.

    MathSciNet  Google Scholar 

  • R. Parikh [1978], “A decidability result for second order process logic”, Proc. IEEE 19th FOCS Symposium, 177–183.

    Google Scholar 

  • R. Parikh [1984], “Logics of knowledge, games, and dynamic logic”, in Foundations of Software Technology ana Theoretical Computer Science, LCNS 181 (M. Joseph and R. Shyamasundear, eds.), 202–222, Springer-Verlag, Berlin.

    Google Scholar 

  • D. Peleg [1987], “Concurrent dynamic logic”, JACM 34:2, 450–479.

    MATH  MathSciNet  Google Scholar 

  • A. Pnueli [1977], “The temporal logic of programs”, Proc. 18th IEEE Symp. on Found. of Comp. Science, 46–67.

    Google Scholar 

  • A. Pnueli [1981], “The temporal semantics of concurrent programs”, Theoretical Comp. Sci 13, 45–60.

    MATH  MathSciNet  Google Scholar 

  • V. Pratt [1976], “Semantical considerations on Floyd-Hoare logic”, 17th Annual IEEE Symp. on Found. Comp. Sci., New York, 109–121.

    Google Scholar 

  • V. Pratt [1980], “Applications of modal logic to programming”, Studia Logica 39, 257–274.

    MATH  MathSciNet  Google Scholar 

  • A. Prior [1967], Past, Present, and Future, Oxford: Clarendon Press.

    MATH  Google Scholar 

  • M. Reinfrank, J. de Kleer, M. L. Ginsberg and E. Sandewall (Eds.) [1989] Non-Monotonic Reasoning, Springer-Verlag, Berlin.

    Google Scholar 

  • R. Reiter [1980], “A logic for default reasoning”, Art. Intell. 13 (1–2).

    MathSciNet  Google Scholar 

  • R. Reiter [1987], “Nonmonotonic reasoning”, Ann. Rev. Comp. Sci. 2, 147–186.

    MathSciNet  Google Scholar 

  • A. Salwicki [1970], “Formalized algorithmic languages”, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phy. 18, 227–232.

    MATH  MathSciNet  Google Scholar 

  • A. Salwicki [1977], “Algorithmic Logic”, in Logic, Foundations of Mathematics, and Comvutability Theory (Butts and Hintikka, ed.), Reidel, 281–295.

    Google Scholar 

  • Y. Shoham [1988], Reasoning about Change, MIT Press, Cambridge, MA

    Google Scholar 

  • G. F. Shvarts [1990], “Autoepistemic Modal Logics”, Theoretical Aspects of Reasoning About Knowledge 3, 97–109.

    MathSciNet  Google Scholar 

  • P. Smets, E. H. Mamdani, D. Dubois, H. Prade [1989], Non-Standard Logics for Automated Reasoning, Academic Press, New York.

    Google Scholar 

  • R. Smullyan [1968], First Order Logic, Springer Verlag, New York.

    MATH  Google Scholar 

  • R. Stalnaker, [1980], “A note on non-monotonic modal logic”, Department of Philosophy, Cornell University, Ithaca. N.Y. (unpublished).

    Google Scholar 

  • R. Stalnaker and G. Pearce [1981], Ifs; Conditionals, Belief, Decision, Chance, and Time, D. Reidel, Dordrecht; Klewer, Boston.

    Google Scholar 

  • P. B. Thistlewhite, M. A. McRobbie, R. K. Meyer, Automated Theorem-proving in Non-classical Logics, Pitman, London, 1988.

    Google Scholar 

  • A. Troelstra and D. van Dalen [1988], Constructivism in Mathematics, vol. 1, 2, North Holland, Amsterdam.

    Google Scholar 

  • A. M. Turing [1949], “Checking a large routine”, Report of a Conference on High Speed Automatic Calculating Machines, University Mathematical Laboratory, Cambridge, England, June, 1949, 67–69.

    Google Scholar 

  • R. Turner [1984]. Logics for Artificial Intelligence, Chichester:Ellis-Horwood.

    Google Scholar 

  • J. van Benthem [1983], The Logic of Time, Reidel, Dordrecht.

    MATH  Google Scholar 

  • J. van Benthem [1984], “Correspondence theory,” in D. Gabbay and F. Guenther, eds., Handbook of Philosophical Logic, vol. II, Reidel, Dordrecht.

    Google Scholar 

  • J. van Benthem [1985], Modal Logic and Classical Logic, Bibliopolis, Napoli.

    MATH  Google Scholar 

  • J. van Benthem [1988], A Manual of Intensional Logic, 2nd ed., CSLI, Stanford.

    MATH  Google Scholar 

  • M. Vardi [1985], “On epistemic logic and logical omniscience”, in J. Y. Halpern, 293–305.

    Google Scholar 

  • M. Vardi [1989], “On the complexity of epistemic reasoning”, LICS 1989, IEEE, 243–246.

    Google Scholar 

  • J. Von Neumann [1963], Collected Works, vol. 5, McMillan, 91–99.

    Google Scholar 

  • M. Xiwen and G. Weide [1983], “A modal logic of knowledge”, 8th IJCAI, 398–401.

    Google Scholar 

  • L. Wallen [1990], Automated Proof Search in Nonclassical Logics, MIT Press.

    Google Scholar 

  • D. Wijesekera [1990], Constructive Modal Logics, D. Phil. Diss., Cornell University, Ithaca, N.Y.

    Google Scholar 

  • D. Wijesekera [1991], “Constructive Modal Logics”, Ann. Pure App. Logic, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nerode, A. (1991). Some Lectures on Modal Logic. In: Bauer, F.L. (eds) Logic, Algebra, and Computation. NATO ASI Series, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76799-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76799-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76801-9

  • Online ISBN: 978-3-642-76799-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics