Skip to main content

Basics of Magnetic Resonance Imaging

  • Chapter
Book cover MRI of the Head and Neck
  • 243 Accesses

Abstract

The first MR experiments were reported independently by Bloch at Stanford University and by Purcell at Harvard University in 1946. The first two-dimensional proton MR image was produced in 1972, when Lauterbur of New York State University measured a water sample [29].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson C, Saloner D, Tsuruda J etal. (1990) Artefacts in maximum-intensity-projection display of MR angiograms. AJR 154: 623–629

    PubMed  CAS  Google Scholar 

  2. Aue WP (1983) Topische Kernspin-Resonanz - eine nichtinvasive Sonde für biochemische Messungen in Lebewesen. Radiologie 23: 357–360

    CAS  Google Scholar 

  3. Bauer M, Obermüller H, Vogl T, Lissner J (1984) MR bei zerebraler alveolärer Echinokokkose. Digitale Bilddiagn 4:S 129–131

    PubMed  CAS  Google Scholar 

  4. Bauer M, Baierl P, Vogl T, Wendt T, Lissner J (1986) Efficacy and secondary intracranial tumors before and after radiotherapy. Society of Magnetic Resonance in Medicine, 5th annual meeting, Montreal, Canada. Book of abstracts vol 3, pp 590–591

    Google Scholar 

  5. Bauer M, Baierl P, Fink U, Vogl T, Rohloff R (1986) Verlaufskontrolle von primären und sekundären Hirntumoren nach Strahlentherapie mittels Kernspintomographie im Vergleich zur Computertomographie. In: Vogler E, Schneider GH (eds) Digitale bildgebende Verfahren - Integrierte digitale Radiologie. 84th Radiological Symposium, Graz, 3–5 at 1985. Schering, Berlin, pp 151–155

    Google Scholar 

  6. Bauer M, Fenzl G, Vogl T, Fink U, Lissner J (1986) Indications for the use of Gd-DTPA in MR of the CNS. Invest Radiol 5: 12

    Google Scholar 

  7. Bauer WM, Baierl P, Obermüller H, Bise K, Valenti M (1985) Comparison of plain and con-trast-enhanced MR in intracranial tumors - report on 37 cases confirmed by histology. In: Society of Magnetic resonance, 4th annual meeting, London. Book of abstracts, pp 310–311

    Google Scholar 

  8. Bauer WM, Baierl P, Vogl T, Obermüller H (1985) Contrast-enhancement in intercranial tumors - a comparison of CT and MR. Radiology 157 (P): 126

    Google Scholar 

  9. Becker H, Vogelsang H, Schwarzrock R (1985) Vergleichende MR- und CT-Untersuchungen bei ausgewählten neuroradiologischen Fragestellungen. RÖFO 142: 23–30

    PubMed  CAS  Google Scholar 

  10. Becker H, Naumann H, Pfalz C (1982) HNO- Heilkunde. Thieme, Stuttgart

    Google Scholar 

  11. Beimert U, Grevers G, Vogl T (1988) Zum Stellenwert der digitalen Subtraktionsangiographie bei der Diagnostik von Glomustumoren. Arch Otorhinolaryngol [Suppl II]: 100–101

    Google Scholar 

  12. Bender A, Bradac GB (1986) Erfahrungen in der radiologischen Diagnostik kleiner Akustikusneurinome. Rontgengenblätter 39: 36–39

    CAS  Google Scholar 

  13. Bentson J (1980) Combined gascisternography and edge enhanced computed tomography of the internal auditory canal. Radiology 136: 777–779

    PubMed  CAS  Google Scholar 

  14. Bottomley PA, Foster TH, Aegersinger RE, Pfeiffer LM (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanism from 1–1000 MHz: dependence on tissue type, NMR frequency, temperature, species, excision and age. Med Phys 11: 112

    Article  Google Scholar 

  15. Bongartz G, Vestring T, Fahrendorf G, Peters PE (1990) Einsatz schneller Sequenzen bei der kraniozerebralen MR-Diagnostik. Fortschr Geb Rontgenstr 153 (6): 669–677

    Article  CAS  Google Scholar 

  16. Brindle KM, Campbell ID (1984) Hydrogen nuclear magnetic resonance studies of cells and tissues. In: James TL (ed) Biomedical magnetic resonance. Radiol Research and Education Foundation, San Francisco, pp 243–255

    Google Scholar 

  17. Brown DG, Riederer SJ, Jack CR et al. (1990) MR-angiography with oblique gradient-recalled echo technique. Radiology 176: 461–466

    PubMed  CAS  Google Scholar 

  18. Carpinelli G, Podo F, Di Vito M, Gresser I, Proietti E, Belardelli F (1985) 31P-NMR study on metabolic modulations of phosphomo- noesters and phosphodiesters in experimental tumors during regression in vivo. Society of Magnetic Resonance in Medicine, 4th annual meeting, London. Book of abstracts, p 454

    Google Scholar 

  19. Creasy JL, Price RR, Presbrey T etal. (1990) Gadolinium-enhanced MR-angiography. Radiology 175: 280–283

    PubMed  CAS  Google Scholar 

  20. Dumoulin CL, Souza SP, Walker MF, Wagle W (1989) Three dimensional phase contrast angiography. Magn Reson Med 9: 139–149

    Article  PubMed  CAS  Google Scholar 

  21. Edelman RR, Hesselink JR (1990) Clinical magnetic resonance imaging. Saunders, Philadelphia, pp 110–182

    Google Scholar 

  22. Edelman RR, Mattle HP, Atkinson DJ, Hooge- woud HM (1990) Magnetic resonance angiography. In: Cardiovascular imaging. American Roentgen Ray Society, Categorial Course Syllabus, pp 51–60

    Google Scholar 

  23. Edelman RR, Wentz KU, Mattle HP etal. (1989) Intracerebral arteriovenous malformations: evaluation with selective MR-angiography and venography. Radiology 173: 831–837

    PubMed  CAS  Google Scholar 

  24. Ehricke H-H, Laub G (1990) Integrated 3D display of brain anatomy and intracranial vasculature in MR imaging. J Comput Assist Tomogr 14 (6): 846–852

    Article  PubMed  CAS  Google Scholar 

  25. Frahm J, Haase A, Mathai D etal. (1985) FLASH MR imaging: from images to movies. Radiology 157: 156 (Abstract)

    Google Scholar 

  26. Frahm J, Merbold KD, Hanike W, Haase A (1985) Stimulated echo imaging. J Magn Reson 64: 81–93

    CAS  Google Scholar 

  27. Frahm J, Haase A, Matthaei D (1986) Rapid three-dimensional MR imaging using the FLASH-teehnique. J Comput Assist Tomogr 10: 363–368

    Article  PubMed  CAS  Google Scholar 

  28. Krayenbühl H, Yaşargil MG (1979) Zerebrale Angiographic für Klinik und Praxis, 3rd edn. Thieme, Stuttgart, pp 38–241

    Google Scholar 

  29. Lauterbur PC (1973) Image formation by induced local interactions. Examples employing NMR. Nature 242: 190

    Article  CAS  Google Scholar 

  30. Lissner J, Seiderer M (1990) Klinische Kernspintomographie, 2nd fully revised edn. Eneke, Stuttgart, pp 59–83, 570–607

    Google Scholar 

  31. Marchal G, Bosnians H, van Fraeyenhoven L et al. (1990) Intracranial vascular lesions: optimization and clinical evaluation of three dimensional time of flight MR-angiography. Radiology 175: 443–448

    PubMed  CAS  Google Scholar 

  32. Masaryk TJ, Modic MT, Ruggieri PM etal. (1989) Three-dimensional (volume) gradient- echo imaging of the carotid bifurcation preliminary clinical experience. Radiology 171: 801–806

    PubMed  CAS  Google Scholar 

  33. Nadel L, Braun IF, Kraft KA, Fatouros PP, Laine FJ (1990) Intracranial vascular abnormalities: values of MR phase imaging to distinguish thrombus from flowing blood. AJNR 11: 1133–1140

    Google Scholar 

  34. Peters PE, Bongartz G, Drews C (1990) Magnetresonanzangiographie der hirnversorgenden Arterien. Fortschr Rontgenstr 152 (5): 528–533

    Article  CAS  Google Scholar 

  35. Sevick RJ, Tsurada JS, Schmalbrock P (1990) Three-dimensional time-of-flight MR angiography in the evaluation of cerebral aneurysms. J Comput Assist Tomogr 14 (6): 874–881

    Article  PubMed  CAS  Google Scholar 

  36. Siemens (1990) Angiography Numaris II/Version A 2.1, Edition 05/1990: Magnetom SP User Guide. Siemens AG, Erlangen, FRG

    Google Scholar 

  37. Suryan G (1951) Nuclear resonance in flowing liquids. Proc Indian Acad Sci Sect A 33: 107

    Google Scholar 

  38. Vogl T (1988) Influence of MR imaging on the human organism. Enke, Stuttgart

    Google Scholar 

  39. Vogl T, Paulus W, Fuchs A, Krafczyk S, Lissner J (1991) Influence of magnetic resonance imaging on evoked potentials and nerve conduction velocities in humans. Invest Radiol 26: 432–437

    Article  PubMed  CAS  Google Scholar 

  40. Vogl T, Krimmel K, Fuchs A, Lissner J (1988) Influence of magnetic resonance imaging on human body core and intravascular temperature. Medical Physics 15: 4: 562–566

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogl, T.J. (1992). Basics of Magnetic Resonance Imaging. In: MRI of the Head and Neck. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76790-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76790-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76792-0

  • Online ISBN: 978-3-642-76790-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics