Magnetic Resonance Spectroscopy

  • Thomas J. Vogl


Magnetic resonance imaging for the diagnosis of tumors of the head and neck is characterized by high sensitivity but sometimes low specificity. Therefore great expectations have been raised by the development of high-resolution in vivo magnetic resonance spectroscopy (MRS). While MRI is based on the proton density and the relaxation times of the tissue under investigation, MRS allows determination of the molecular linkage of several atoms [9]. The purpose of spectroscopy is to evaluate the frequency of the different molecular bonds containing a given atom in the region of interest. In vivo spectroscopy investigations have established typical spectra for different types of normal or pathologic tissues.


Magnetic Resonance Spectros Synovial Sarcoma Surface Coil Nuclear Magnetic Resonance Spectroscopy Transmitter Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Egerter DE (1989) Is MR spectroscopy ready for prime time? Diagn Imaging. September: 127–146Google Scholar
  2. 2.
    Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R (1989) Localized high-resolution NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9: 79–93PubMedCrossRefGoogle Scholar
  3. 3.
    Frahm J, Merboldt KD, Hänicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72: 502Google Scholar
  4. 4.
    Griffiths JR, Cady E, Edwards RHT, McCready VR (1983) 31-P-NMR studies of human tumor in situ. Lancet i: 1435–1436CrossRefGoogle Scholar
  5. 5.
    Hall EJ (1987) Radiobiology for the radiologist. Harper amp; Row, New YorkGoogle Scholar
  6. 6.
    Luyten PR, Heindel W, Herholz K, Marien AJH, van Gerwen PHJ, den Hollander JA, Friedmann G, Heiss W-D (1990) 1H NMR spectroscopic imaging and positron emission tomography of patients with intracranial tumors. European Congress of NMR in Medicine and Biology. Strasbourg, 2–5 May 1990, Book of abstracts 94Google Scholar
  7. 7.
    Ordige RJ, Connelly A, Lohman JAB (1986) Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson 66: 283–294Google Scholar
  8. 8.
    Semmler W (1988) Monitoring tumor response to chemotherapy in patients with 31-P-MR spectroscopy. Symposium on Positron Emission Tomography and Magnetic Resonance Spectroscopy in Oncology, Heidelberg. Book of abstracts: 15Google Scholar
  9. 9.
    Vogl T, Peer F, Reimann V, Holtmann S, Rennschmid C, Weber H, Hahn D, Lissner J (1989) In-vivo 31P-Magnetresonanz-Spektroskopie und MRI bei Patienten mit oberflächlich gelegenen Tumoren. Fortschr Röntgenstr 1: 58–65CrossRefGoogle Scholar
  10. 10.
    Vogl T, Peer F, Schedel H, Reimann V, Holtmann S, Rennschmid C, Sauter R, Lissner J (1989) 31P-Spectroscopy of head and neck tumors — surface coil technique. Magn Reson Imaging 7: 425–435Google Scholar
  11. 11.
    Vogl T, Rennschmid C, Sauter R, Holtmann S, Schedel H, Peer F, Lissner J (1988) 31P in-vivo spectroscopy of human tumors with image guided technique (ISIS). Tumor Diagn Therapy 9: 168–169Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Thomas J. Vogl
    • 1
  1. 1.Radiologische Klinik InnenstadtRadiologischen Universitätsklinik MünchenMünchen 2Germany

Personalised recommendations