Skip to main content

Narcissus and Gerardia lectins: Tools for the development of a vaccine against AIDS and a new ELISA to quantify HIV-gp 120

  • Conference paper
  • 67 Accesses

Abstract

The lectins, isolated from Narcissus pseudonarcissus [NPL] and Gerardia savaglia [Gerardia-lectin], are specific for terminal Man(α1-3)Man units. They react very specifically with the external glycoprotein gp120 of the AIDS-virus, the human immunodeficiency virus type 1 (HIV-1). They prevent in vitro the infection of cells with HIV. These lectins were tools for identifying antigens [mannans from Candida albicans and from Saccharomyces cerevisiae, comprising Man(α1-3)Man and Man(α1-2)Man linked residues] which were successfully used to raise in rabbits neutralizing antibodies against HIV infection in vitro. The NPL was used to develop a novel enzyme-linked immunoassay [ELISA] system for quantifying HIV-gp120 within the range of 0.6 to 20,000 ng/ml.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan JS, Coligan JE, Barin F, McLane MF, Sodrowski JG, Rosen CA, Haseltine WA, Lee TH, Essex M (1985) Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 228: 1091–1094

    Article  PubMed  CAS  Google Scholar 

  • Baenziger JU, Green ED (1988) Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochem Biophys Acta 947: 287–306

    PubMed  CAS  Google Scholar 

  • Bachmann M, Pfeifer K, Schröder HC, Müller WEG (1990) Characterization of the autoantigen La as a nucleic acid dependent ATPase/dATPase with melting properties. Cell 60: 85–63

    Article  PubMed  CAS  Google Scholar 

  • Balzarini J, Schols D, Neyts J, VanDamme E, Peumans W, De Clercq E (1991) α-(l-3)- and α -(l-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. Antimicr Agents Chemother: in press

    Google Scholar 

  • Berman PW, Groopman JE, Gregory T, Clapham PR, Weiss RA, Ferriani R, Riddle L, Shimasaki C, Lucas C, Lasky LA (1988) Human immunodeficiency virus type 1 challenge of chimpanzees immunized with recombinant envelope glycoprotein gpl20. Proc Natl Acad Sei USA 85: 5200–5204

    Article  CAS  Google Scholar 

  • Bouwens L, Wisse E (1988) Tissue localization and kinetics of pit cells or large granule lymphocytes in the liver of rats treated with biological response modifiers. Hepatology 8: 46–52

    Article  PubMed  CAS  Google Scholar 

  • Capon DJ, Chamow SM, Mordenti J, Marsters SA, Gregory T, Mitsuya H, Byrn RA, Lucas C, Wurm FM, Groopman JE, Smith DH (1989) Designing CD4 immunoadhesins for AIDS therapy. Nature 337: 525–532

    Article  PubMed  CAS  Google Scholar 

  • Clapham PR, Weber JN, Whitby D, Mcintosh K, Dalgleish AG, Maddon PJ, Deen KC, Sweet RW, Weiss RA (1988) Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells. Nature 337: 368–370

    Article  Google Scholar 

  • Dalgleish AG, Beverley PCL, Clapham PR, Crawford DH, Greaves MP, Weiss RA (1984) The CD4 antigen is an essential component of the AIDS retrovirus. Nature 312: 763–767

    Article  PubMed  CAS  Google Scholar 

  • DiCarlo FJ, Fiore JV (1958) On the compositon of Zymosan. Science 127: 756–757

    Article  Google Scholar 

  • Fisher RA, Bertonis JM, Meier W, Johnson VA, Costopoulos DS, Liu T, Tizard R, Walker BD, Hirsch,MS, Schooley RT, Flavell RA (1988) HIV infection is blocked in vitro by recombinant soluble CD4. Nature 331: 76–78

    Article  PubMed  CAS  Google Scholar 

  • Fukazawa Y, Nishikawa A, Suzuki M, Shinoda T (1980) Immunological basis of the serologic specificity of the yeast: immunochemical determinants of several antigenic factors of yeasts. In: Preusser H (ed) Medical mycology, Zbl Bakt Suppl 8. Gustav Fischer, Stuttgart, pp 127–136

    Google Scholar 

  • Geyer H, Holschbach C, Hunsmann G, Schneider J (1988) Carbohydrates of human immunodeficiency virus. J Biol Chem 262: 11760–11767

    Google Scholar 

  • Gorin PAJ (1973) Rationalization of carbon-13 magnetic resonance spectra of yeast mannans and structurally related oligosaccharides. Can J Chem 51: 2375–2383

    Article  CAS  Google Scholar 

  • Goudsmit J, Debouck C, Meloen RH, Smit L, Bakker M, Asher DH, Wolff AV, Gibbs CJ, Gajdusek DC (1988) Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type specific antibodies in experimentally infected chimpanzees. Proc Natl Acad Sci USA 85: 4478–4482

    Article  PubMed  CAS  Google Scholar 

  • Gruters, RA Neefjes JJ, Tersmette M, Matthijs de Goede REY, Tulp A, Huisman HG, Miedema F, Ploegh HL (1987) Interference with HIV- induced syncytium formation and viral infectivity by inhibitors of trimming glycosidase. Nature 330: 74–77

    CAS  Google Scholar 

  • Hansen JES, Clausen H, Nielsen C, Teglbjaerg LS, Hansen LL, Nielsen CM, Dabelsteen E, Mathiesen L, Hakomori SI, Nielson JO (1990) Inhibition of human immunodeficiency virus ( HIV) infection in vitro by anticarbohydrate monoclonal antibodies. J Virol 64: 2833–2840

    PubMed  CAS  Google Scholar 

  • Hu SL, Fultz P, McClure HM, Eichberg JW, Thomas EK, Zarling J, Singhai MC, Kosowski SG, Swenson RB, Anderson DC (1987) Effect of neutralization with a vaccinia-HIV env recombinant on HIV infection of chimpanzees. Nature 328: 721–723

    Article  PubMed  CAS  Google Scholar 

  • Hussey RE, Richardson NE, Kowalski M, Brown NR, Chang HC, Siliciano RF, Dorfman T, Walker B, Sodroski J, Reinherz EL (1988) A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature 331: 78–81

    Article  PubMed  CAS  Google Scholar 

  • Kai C, Szigeti R, Aman P, Klein E (1988) Activation of B lymphocytes with human serum-treated zymosan. Cell Immunol 116: 467–474

    Article  PubMed  CAS  Google Scholar 

  • Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC, Montagnier L (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312: 767–768

    Article  PubMed  CAS  Google Scholar 

  • Kljajic Z, Schröder HC, Rottmann M, Cuperlovic M, Movesian M, Uhlenbruck G, Gasic M, Zahn RK, Müller WEG (1987) A D-mannose-specific lectin from Gerardia savaglia that inhibits nucleocytoplasmic transport of mRNA. Eur J Biochem 169: 97–104

    Article  PubMed  CAS  Google Scholar 

  • Liener IE, Sharon N, Goldstein IJ (eds) (1986) The Lectins. Academic Press Orlando

    Google Scholar 

  • Lifeson J, Coutre S, Huang E, Engelman E (1986) Role of envelope glycoprotei n carbohydrate in human immunodeficiency virus ( HIV) infectivity and virus-induced cell fusion. J Exp Med 164: 2101–2106

    Google Scholar 

  • Mizuochi T, Spellman MW, Larkin M, Solomon J, Basa LJ, Feizi T (1988) Carbohydrate structures of the human-immunodeficiency-virus (HIV) recombinant envelope glycoprotein gpl20 produced in Chinese-hamster ovary cells. Biochem J 254: 599–603

    PubMed  CAS  Google Scholar 

  • Montefiori DC, Robinson WE, Mitchell WM (1988) Role of protein N- glycosylation in pathogenesis of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 85: 9248–9252

    Article  PubMed  CAS  Google Scholar 

  • Montreuil J (1984) Spatial conformation of glycans and glycoproteins. Biol Cell 51: 115–132

    PubMed  CAS  Google Scholar 

  • Müller WEG, Renneisen K, Kreuter MH, Schröder HC and Winkler I (1988a) The D-mannose-specific lectin from Gerardia savaalia blocks binding of human immunodeficiency virus type I to H9 cells and human lymphocytes in vitro. J Acquir Immun Defic Syndr 1: 453–458

    Google Scholar 

  • Müller WEG, Sarin PS, Sun D, Rossol S, Voth R, Rottmann M, Hess G, Meyer zum Büschenfelde KH, Schröder HC (1988b) Dual biological activity of apurinic acid on human lymphocytes. Antiviral Res: 191–204

    Google Scholar 

  • Müller WEG, Reuter P, Schaffrath M, Schröder HC and Winkler I (1989) Antibodies to mannan inhibit infection of lymphocytes by HIV-1 in vitro. AIDS-Forschung (AIF0) 4: 465–466

    Google Scholar 

  • Müller WEG, Reuter P, Maidhof A, Schröder HC, Uhlenbruck G, and Winkler I (1990a) Mannan: An antigen for raising neutralizing polyclonal antibodies to the AIDS virus. In: Schauzu M (ed) Progress in AIDS Research in the Federal Republic of Germany (bga-Schriften 1/1990). MMV Medizin-Verlag München, pp 205–209

    Google Scholar 

  • Müller WEG, Schröder HC, Reuter P, Maidhof A, Dindorf W, Uhlenbruck G, und Winkler I, (1990b) Neutralisierende, polyclonale Antikörper gegen das Humane Immundefizienz-Virus Typ 1 (HIV-1), die die Kohlenhydrat- Struktur des gp120 erkennen. AIFO 5: 78–82

    Google Scholar 

  • Müller WEG, Schröder HC, Reuter P, Maidhof A, Uhlenbruck G, and Winkler I (1990c) Polyclonal antibodies to mannan from yeast also recognize the carbohydrate structure of gpl20 of the AIDS virus: an approach to raise neutralizing antibodies against HIV infection in vitro. AIDS 4: 159–162

    Article  PubMed  Google Scholar 

  • Müller WEG, Bachmann M, Weiler BE, Schröder HC, Uhlenbruck G, Shinoda T, Shimizu H, and Ushijima H, (1991) Antibodies against defined carbohydrate structures of Candida albicans protect H9 cells against infection with human immunodeficiency virus-1 in vitro. J Acquir Immun Def Syndr, in press

    Google Scholar 

  • Putney SD, Matthews TJ, Robey WG, Lynn DL, Robert-Guroff M, Mueller WT, Langlois AJ, Ghrayeb J, Petteway SR, Weinhold KJ, Fischinger PJ, Wong-Staal F, Gallo RC, Bolognesi DP (1986) HTLV-III/LAV- neutralizing antibodies to an E. coli-produced fragment of the virus envelope. Science 234: 1392–1395

    CAS  Google Scholar 

  • Richardson NE, Brown NR, Hussey RE, Vaid A, Matthews TJ, Bolognesi DP, Reinherz EL (1988) Binding site for human immunodeficiency virus coat protein gpl20 is located in the NH2-terminal region of T4 (CD4) and requires the intact variable-region-like domain. Proc Natl Acad Sci USA 85: 6102–6106

    Article  PubMed  CAS  Google Scholar 

  • Robinson WE, Montefiori DC, Mitchell WM (1987) Evidence that mannosyl residues are involved in human immunodeficiency virus type 1 (HIV-1) pathogenesis. AIDS Res and Human Retrov 3: 265–281

    Article  CAS  Google Scholar 

  • Sattentau QI, Weiss RA (1988) The CD4 antigen: physiological ligand and HIV receptor. Cell 52: 631–633

    Article  PubMed  CAS  Google Scholar 

  • Shibuya N, Goldstein IJ, VanDamme ELM, Peumans WJ (1988) Binding properties of a mannose-specific lectin from the snowdrop ( Galanthus nivalis) bulb. J Biol Chem 263: 728–743

    Google Scholar 

  • Smith DH, Byrn RA, Marsters SA (1987) Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science 328: 1704–1707

    Article  Google Scholar 

  • So LL, Goldstein IJ (1967) Protein-carbohydrate interaction; IV. J Biol Chem 242: 1617–1622

    Google Scholar 

  • Traunecker A, Luke W, Karjalainen K (1988) Soluble CD4 molecules neutralize human immunodeficiency virus type 1. Nature 331: 84–86

    Article  PubMed  CAS  Google Scholar 

  • Van Damme EJ, Allen AK, Pneumans WJ (1988) Related mannose-specific lectins from different species of the family Amarvllidaceae. Physiol Plantar 73: 52–57

    Article  Google Scholar 

  • Walker BD, Kowalski M, Goh WC, Kozarsky K, Krieger M, Rosen C, Rohrschneider L, Haseltine WA, Sodroski J (1987) Inhibition of human immunodeficiency virus syncytium formation and virus replication by castanospermine. Proc Natl Acad Sci USA 84: 8120–8124

    Article  PubMed  CAS  Google Scholar 

  • Weiler BE, Schröder HC, Stefanovich V, Stewart D, Forrest JMS, Allen LB, Bowden J, Kreuter MH, Voth R, and Müller WEG (1990) Sulfoevernan, a polyanionic polysaccharide, and the Narcissus lectin potently inhibit HIV infection by binding to viral envelope protein. J Gen Virol 71: 1957–1963

    Article  PubMed  CAS  Google Scholar 

  • Weiler BE, Schäcke H., Bachmann M, Mills J, Gilbert M, Brigido L, Matthes E, Forrest J, and Müller WEG (1991) Human immunodeficiency virus: novel enzyme-linked immunoassays for the quantitation of envelope glycoprotein 120. Application in diagnosis and drug screening. J Virol Methods, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, W.E.G. et al. (1991). Narcissus and Gerardia lectins: Tools for the development of a vaccine against AIDS and a new ELISA to quantify HIV-gp 120. In: Gabius, H.J., Gabius, S. (eds) Lectins and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76739-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76739-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76741-8

  • Online ISBN: 978-3-642-76739-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics