Endogenous mannose-binding lectins in brain development and function

  • J.-P. Zanetta
  • S. Kuchler
  • S. Lehmann
  • P. Marschal
  • M. Zaepfel
  • A. Meyer
  • A. Badache
  • A. Reeber
  • G. Vincendon

Abstract

The formation of brain tissue owes its specificity to multiple steps involving cell interactions during various stages of ontogenesis. Guided neuron migration, synaptogenesis and myelination constitute three essential steps in brain organization, where glycobiological recognition or adhesion systems play a fundamental role. The key molecules in these phenomena were postulated to belong to the family of cell adhesion molecules (CAMs; Crossin et al., 1986; Edelman, 1985 and 1986; Grumet et al., 1985; Hoffmann et al., 1986; Hoffmann and Edelman, 1987; Rieger et al., 1986; Salzer and Colman, 1989) acting by homophilic interactions. More recently two different mannose-binding endogenous lectins of similar specificity (Zanetta et al., 1985a and 1987a) seem to play important roles in relation with their endogenous glycoprotein ligands (Kuchler et al., 1988, 1989a,b and c; 1990a,b and c; Lehmann et al., 1990). It is worthy of mention that some of these glycoprotein ligands are members of the family of cell adhesion molecules (Kuchler et al., 1988, 1989a and b; 1990a and b) and share specific glycans binding to some onco-fetal antibodies. Thus, heterophilic interactions involving glycobiological system deserve attention. This paper summarizes the major observations concerned with the function in the brain of the two endogenous mannose-binding lectins, called CSL and R1 (Zanetta et al., 1985a and 1987a) and of their endogenous ligands.

Keywords

Migration Carbohydrate Heparin Neurol Plasminogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abo T, Balch C M, (1981) A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 127: 1024–1029PubMedGoogle Scholar
  2. Altman J, (1972a) Postnatal development of the cerebellar cortex in the rat. I The external germinal layer and the transitional molecular layer. J Comp Neurol 145: 353–398PubMedCrossRefGoogle Scholar
  3. Altman J, (1972b) Postnatal development of the cerebellar cortex in the rat. II Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145: 399–464PubMedCrossRefGoogle Scholar
  4. Altman J, (1972c) Postnatal development of the cerebellar cortex in the rat. Ill Maturation of the components of the granular layer. J Comp Neurol 145: 465–514PubMedCrossRefGoogle Scholar
  5. Badache A, Burger D, Kuchler S, Vincendon G, Zanetta J-P, Steck A, (1991) Heterogeneity of the carbohydrate moieties of myelin glycoproteins. J Neurochem submittedGoogle Scholar
  6. Bardosi A, Dimitri T, Gabius H-J, (1988) Endogenous carbohydrate binding proteins in oligodendrogliomas. A histochemical study. Acta Neuropathol 446: 1–7Google Scholar
  7. Bollensen E, Schachner M, (1987) The peripheral myelin glycoprotein PO expresses the L2/HNK-1 and L3 carbohydrate structures shared by neural adhesion molecules. Neurosci Lett 82: 77–82PubMedCrossRefGoogle Scholar
  8. Bon S, Meflah K, Musset F, Grassi J, Massoulie J, (1987) An immunoglobulin M monoclonal antibody, recognizing a subset of acetylcholinesterase molecules from electric organs of Electrophorus electricus and Torpedo, belongs to the HNK-1 anticarbohydrate family. J Neurochem 49: 1720–1731PubMedCrossRefGoogle Scholar
  9. Chen S, Hillman D E, (1982) Plasticity of the parallel fiber-Purkinje cell synapse by spine takeover and new synapse formation in the adult rat. Brain Res 240: 205–220PubMedCrossRefGoogle Scholar
  10. Crossin KL, Hoffman S, Grumet M, Thiery J-P, Edelman GM, (1986) Site restricted expression of cytotactin during development of the chicken embryo. J Cell Biol 102: 1917–1930PubMedCrossRefGoogle Scholar
  11. Dautigny A, Mattei M-G, Morello D, Alliel PM, Pham-Dinh D, Amar L, Arnaud D, Simon D, Mattei J-F, Guenet J-L, Jolles P, Avner P, (1986) The structural gene coding for myelin-associated proteolipid protein is mutated in jimpy mice. Nature 321: 867–869PubMedCrossRefGoogle Scholar
  12. Doolittle DP, Schweikart KM (1977) Myelin deficient, a new neurological mutant in the mouse. J Hered 68: 331–332PubMedGoogle Scholar
  13. Decoster M A, Devries GH, (1989) Evidence that the axolemmal mitogen for cultured Schwann cells is a positively charged, heparan sulfate proteoglycan-bound, heparin displaceable molecule. J Neurosci Res 22: 283–289PubMedCrossRefGoogle Scholar
  14. Dontenwill M, Devilliers G, Langley O K, Roussel G, Hubert P, Reeber A, Vincendon G, Zanetta J-P, (1983) Arguments in favour of endocytosis of glycoprotein components of the membranes of parallel fibers by Purkinje cells during the development of the rat cerebellum. Dev Brain Res 10: 287–299.CrossRefGoogle Scholar
  15. Dontenwill M, Roussel G, Zanetta J-P, (1985) Immunohistochemical localization of a lectin like molecule “Rl” during the postnatal development of the rat cerebellum. Dev Brain Res 17: 245–252CrossRefGoogle Scholar
  16. Duncan ID, Haammang JP, Trapp BD, (1987) Abnormal compact myelin in the myelin-deficient rat: absence of proteolipid protein correlates with a defect in the intraperiod line. Proc Natl Acad Sci USA 84: 6287–6291PubMedCrossRefGoogle Scholar
  17. Eckenhoff MF, Pysh JJ, (1979) Double walled coated vesicle formation: evidence for massive and transient conjugate internalization of plasma membranes during cerebellar development. J Neurocytol 8: 623–638PubMedCrossRefGoogle Scholar
  18. Edelman GM, (1985) Cell adhesion and the molecular processes of morphogenesis. Ann Rev Biochem 54: 135–169PubMedCrossRefGoogle Scholar
  19. Edelman GM, (1986) Cell adhesion molecules in the regulation of animal form and tissue pattern. Ann Rev Cell Biol 2: 81–116PubMedCrossRefGoogle Scholar
  20. Espinosa De Los Monteros A, Roussel G, Nussbaum J-L, (1986). A procedure for long-term culture of oligodendrocytes. Dev Brain Res 24: 117–125CrossRefGoogle Scholar
  21. Filbin M T, Walsh F S, Trapp B D, Pizzey J A, Tennekoon X, (1990) Role of myelin P0 protein as a homophilic adhesion molecule. Nature 344: 871–872.PubMedCrossRefGoogle Scholar
  22. Fressinaud C, Kuchler S, Sarlieve LL, Vincendon G, Zanetta J-P, (1988) Adhesion on a matrix made of the nervous lectin CSL induces increased proliferation of oligodendrocytes. C R Acad Sci Paris 307: 863–868PubMedGoogle Scholar
  23. Gabius H-J, Kohnke B, Hellmann T, Dimitri T, Bardosi A, (1988) Comparative histochemical and biochemical analysis of endogenous receptors for glycoproteins in human and pig peripheral nerve. J Neurochem 51: 756–763PubMedCrossRefGoogle Scholar
  24. Grumet M, Hoffman S, Crossin KL, Edelman GM, (1985) Cytotactin, an extracellular matrix protein of neural and non neural tissues that mediates glia neuron interaction. Proc Natl Acad Sci USA 82: 8075–8079PubMedCrossRefGoogle Scholar
  25. Hemmendinger L M, Caviness Jr VS, (1988) Cellular migration in developing cerebral wall expiants in vitro. Dev Brain Res 38: 290–295CrossRefGoogle Scholar
  26. Henderson CE, Huchet M, Changeux J-P, (1983) Denervation increases a neurite-promoting activity in extracts of skeletal muscle. Nature 302: 609–611PubMedCrossRefGoogle Scholar
  27. Hoffman S, Edelman GM, (1987) A proteoglycan with HNK-1 antigenic determinants is a neuron-associated ligand for cytotactin. Proc Natl Acad Sci 84: 2523–2527PubMedCrossRefGoogle Scholar
  28. Hoffman S, Friedlander DR, Chuong C-M, Grumet M, Edelman GM, (1986) Differential contributions of Ng-CAM and N-CAM to cell adhesion in different neural regions. J Cell Biol 103: 145–158PubMedCrossRefGoogle Scholar
  29. Holder N, Clarke DW, (1988) Is there a correlation between continuous neurogenesis and directed axon regeneration in the vertebrate nervous system? TINS 11: 94–99PubMedGoogle Scholar
  30. Ikeda K, Yamamoto T (1985) Myelin basic protein has lectin like properties. Brain Res 329: 105–108PubMedCrossRefGoogle Scholar
  31. Inuzuka T, Quarles RH, Noronha AB, Dobersen MJ, Brady RO, (1984) A human lymphocyte antigen is shared with a group of glycoproteins in peripheral nerve. Neurosci Lett 51: 105–111PubMedCrossRefGoogle Scholar
  32. Kitamura K, Suzuki M, Uyemura K, (1976) Purification and partial characterization of the two glycoproteins in bovine peripheral nerve myelin membrane. Biochim Biophys Acta 455: 806–816PubMedCrossRefGoogle Scholar
  33. Kitamura K, Sakamoto Y, Suzuki M, Uyemura K, (1981) In: Yamatawa T, Osawa T, Handa S, (eds) Glycoconjugates. Japan Scientific Societies Press, Tokyo, p 273–274Google Scholar
  34. Kuchler S, Vincendon G, Zanetta J-P, (1987) Immunocytochemical localization of an endogenous cerebellar lectin during development of rat cerebellum. C R Acad Sci Paris, Série III, 305: 317–320Google Scholar
  35. Kuchler S, Fressinaud C, Sarlieve LL, Vincendon G, Zanetta J-P, (1988) Cerebellar soluble lectin is responsible for cell adhesion and participates in myelin compaction in cultured rat oligodendrocytes. Dev Neurosci 10: 199–212PubMedCrossRefGoogle Scholar
  36. Kuchler S, Rougon G, Marschal P, Lehmann S, Reeber A, Vincendon G, Zanetta J-P, (1989a) Localization of a transiently expressed glycoprotein in developing cerebellum delineating its possible ontogenetic roles. Neuroscience 33: 111–124.PubMedCrossRefGoogle Scholar
  37. Kuchler S, Herbein G, Sarlieve LL, Vincendon G, Zanetta J-P, (1989b) An endogenous lectin CSL interacts with major glycoprotein components in peripheral nervous system myelin. Cell Molec Biol 35: 581–596Google Scholar
  38. Kuchler S, Perraud F, Sensenbrenner M, Vincendon G, Zanetta J-P, (1989c) An endogenous lectin found in rat astrocyte culture has a role in cell adhesion but not in cell proliferation. Glia 2: 437–445PubMedCrossRefGoogle Scholar
  39. Kuchler S, Zanetta J-P, Zaepfel M, Badache A, Sarkieve L L,Gumpel M, Baumann N, Vincendon G, (1990a) Endogenous lectin CSL and its ligands in central nervous system of myelin of Quaking and Jimpy mutant mice. Dev Neurosci 12: 382–397Google Scholar
  40. Kuchler S, Zanetta J-P, Zaepfel M, Badache A, Sarkieve L L, Vincendon G, Matthieu J-M, (1990b) Endogenous lectin CSL and its ligands in central nervous system of myelin deficient (mid) mutant mice. J Neurochem 56: 436–445CrossRefGoogle Scholar
  41. Kuchler S, Zanetta J-P, Bon S, Zaepfel M, Massoulie J, Vincendon G, (1991) Expression and localization in the developing cerebellum of the carbohydrate epitopes revealed by Elec-39, an IgM monoclonal antibody related to HNK-1. Neuroscience in pressGoogle Scholar
  42. Lehmann S, Kuchler S, Theveniau M, Vincendon G, Zanetta J-P, (1990) An endogenous lectin and one of its neuronal glycoprotein ligands are involved in contact guidance of neuron migration. Proc Natl Acad Sci USA 87: 6455–6459PubMedCrossRefGoogle Scholar
  43. Lehmann S, Kuchler S, Gobaille S, Marschal P, Badache A, Reeber A, Vincendon G, Zanetta J-P, (1991) Lesion-induced reexpression of recognition molecules in adult rat cerebellum. Proc Natl Acad Sci USA submittedGoogle Scholar
  44. Lemke G, Axel R, (1985) Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell 40: 501–508PubMedCrossRefGoogle Scholar
  45. Lindner J, Rathjen F G, Schachner M, (1983) LI mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. Nature 305: 427 - 430PubMedCrossRefGoogle Scholar
  46. Lindner J, Guenther J, Nick H, Zinser G, Antonicek H, Schachner M, Monard D, (1986) Modulation of cell migration by a glia derived protein. Proc. Natl. Acad. Sci. USA 83: 4568–4571PubMedCrossRefGoogle Scholar
  47. Linington C, Webb M et Woodhams PL, (1984) A novel myelin associated glycoprotein defined by a mouse monoclonal antibody. J Neuroimmunol 6: 387–396Google Scholar
  48. Mailly P, BEN Younes-Chennoufi A, Bon S, (1989) The monoclonal antibodies Elec-39, HNK-1 and NC-1 recognize common structures in the nervous system and muscles of vertebrates. Neurochem Int 15: 517–530PubMedCrossRefGoogle Scholar
  49. Marschal P, Reeber A, Neeser J-R, Vincendon G, Zanetta J-P, (1989) Carbohydrate and glycoprotein specificity of two endogenous cerebellar lectins. Biochimie 71: 645–653PubMedCrossRefGoogle Scholar
  50. Martini R, Schachner M, (1986) Immunoelectron microscopic localization of neural cell adhesion molecules ( LI, N-CAM, and MAG ) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. J Cell Biol 103: 2439–2448PubMedCrossRefGoogle Scholar
  51. Matthieu J-M, (1981) Glycoproteins associated with myelin in the central nervous system. Neurochem Int 3: 355–363PubMedCrossRefGoogle Scholar
  52. Matthieu J-M, (1982) Myelin basic protein and the stability of the multilamellar myelin structure. Bull Schweiz Acad Med Wiss 101: 108Google Scholar
  53. Matthieu J-M, Daniel A, Quarles R H, Brady R O, (1974) Interaction of Concanavalin A and other lectins with CNS myelin. Brain Res 81: 348 - 353PubMedCrossRefGoogle Scholar
  54. Mc Carthy KD, De Vellis J, (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85: 890–902PubMedCrossRefGoogle Scholar
  55. Mc Garry RC, Helfand SL, Quarles RH, Roder JC (1983) Recognition of myelin associated glycoprotein by the monoclonal antibody HNK-1. Nature 306: 376–378CrossRefGoogle Scholar
  56. Musset F, Frobert Y, Grassi J, Vigny M, Boulla G, Bon S, Massoulie J, (1987) Monoclonal antibodies against acetylcholinesterase from electric organs of Electrophorus and Torpedo. Biochimie 69: 147–156PubMedCrossRefGoogle Scholar
  57. Moonen G, Grau-Wagemans M P, Selak I, (1982) Plasminogen activator-plasmin system and neuronal migration. Nature 298: 753–755PubMedCrossRefGoogle Scholar
  58. Nave K-A, Lai C, Bloom FE, Milner RJ, (1986) Jimpy mutant mouse: a 74-base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in RNA splicing. Proc Natl Acad Sci USA 83: 9264–9268PubMedCrossRefGoogle Scholar
  59. Neskovic NM, Roussel G, Nussbaum J-L, (1986) UDP-Galactose: ceramide galactosyltranferase of rat brain: a new method of purification and production of specific antibodies. J Neurochem 47: 1412–1418PubMedCrossRefGoogle Scholar
  60. Nicholson J L, Altman J, (1972a) The effect of early hypothyroidism on the development of rat cerebellar cortex. I Cell proliferation and differentiation. Brain Res 44: 13–24Google Scholar
  61. Nicholson J L, Altman J, (1972b) The effect of early hypothyroidism on the development of rat cerebellar cortex. II Synaptogenesis in the molecular layer. Brain Res 44: 25–32Google Scholar
  62. O’Shannessy DJ, Willison HJ, Inuzuka T, Quarles RH, (1985) The species distribution of nervous system antigens that react with anti myelin associated glycoprotein antibodies. J Neuroimmunol 9: 255–268PubMedCrossRefGoogle Scholar
  63. Palacios-Pru E L, Palacios L, Mendoza R V, (1981) Synaptogenic mechanism during chicken cerebellar cortex development. J Submicrosc Cytol 13: 145 - 167PubMedGoogle Scholar
  64. Palay S L, Chan-Palay V, (1974) in “Cerebellar cortex” Palay SL and Chan-Palay V Eds, Springer Verlag, Berlin, HeidelbergCrossRefGoogle Scholar
  65. Poduslo JF, (1981) Developmental regulation of the carbohydrate composition of glycoproteins associated with central nervous system myelin. J Neurochem 36: 1924–1931PubMedCrossRefGoogle Scholar
  66. Poduslo JF, Everly JL, Quarles RH, (1977) A low molecular weight glycoprotein associated with isolated myelin: distinction from myelin proteolipid protein. J Neurochem 28: 977–986PubMedCrossRefGoogle Scholar
  67. Poduslo JF, Harman JL, MC Farlin DE, (1980) Lectin receptors in central nervous system myelin. J Neurochem 34: 1733–1744PubMedCrossRefGoogle Scholar
  68. Poltorak M, Sadoul R, keilhauer G, Landa C, Fahrig T, Schachner M, ( 1987 ) Myelin-associated glycoprotein, a member of the L2 / HNK-1 family of neural cell adhesion molecules, is involved in neuron- oligodendrocyte and oligodendrocyte- oligodendrocyte interaction. J Cell Biol 105: 1893–1899PubMedCrossRefGoogle Scholar
  69. Quarles RH, Mcintyre U, Pasnak CF, (1979) Lectin binding proteins in central nervous system myelin. Biochem J 183: 213–221PubMedGoogle Scholar
  70. Rakic P, (1971) Neuron glia relationship during granule cell migration in developing cerebellar cortex. A golgi and electron microscopy study. J Comp. Neurol. 141: 283–312PubMedCrossRefGoogle Scholar
  71. Rakic P, Sidman R L, (1973) Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol 152: 103–132PubMedCrossRefGoogle Scholar
  72. Ramon y Cajal S (1911) Histologie du système nerveux de l’homme et des vertébrés. Vol. I and I I, Maloine, Paris.Google Scholar
  73. Reeber A, Vincendon G, Zanetta J-P, (1981) Isolation and immunohistochemical localization of a Purkinje cell specific glycoprotein subunit from rat cerebellum. Brain Res 229: 53–65PubMedCrossRefGoogle Scholar
  74. Rieger F, Daniloff JK, Pincon-Raymond M, Crossin KL, Grumet M, Edelman M, (1986) Neuronal cell adhesion molecules and cytotactin are colocalized at the node of Ranvier. J Cell Biol 103: 379–391PubMedCrossRefGoogle Scholar
  75. Sakamoto Y, Kitamura K, Yoshimura K, Nishijima T, Uyemura K, (1987) Complete amino acid sequence of PO protein in bovine peripheral nerve myelin. J Biol Chem 262: 4208 - 4214PubMedGoogle Scholar
  76. Salzer J L, Colman DR, (1989) Mechanisms of cell adhesion in the nervous system. Role of the immunoglobulin gene superfamily. Dev Neurosci 11: 377–390PubMedCrossRefGoogle Scholar
  77. Schluesener HJ, Sobel RA, Linington C, Weiner HL, (1987) A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Neuroimmunol 12: 4016–4021Google Scholar
  78. Sidman R L, Rakic P, (1973) Neuron migration with special reference to developing human brain: a review. Brain Res 62: 1–35PubMedCrossRefGoogle Scholar
  79. Sotelo C, Changeux J-P, (1974a) Bergmann fibers and granular cell migration in the cerebellum of homozygous weaver mutant mouse. J Cell Biol 53: 271–289CrossRefGoogle Scholar
  80. Sotelo C, Changeux J-P, (1974b) Trans-synaptic degeneration en cascade in the cerebellar cortex of staggerer mutant mouse. Brain Res 77: 484–491PubMedCrossRefGoogle Scholar
  81. Trapp BD, Quarles RH, Suzuki K, (1984b) Immunocytochemical studies of quaking mice support a role for the myelin-associated glycoprotein in forming and maintaining the periaxonal space and periaxonal cytoplasmic collar of myelinating Schwann cells. J Cell Biol 99: 594–606PubMedCrossRefGoogle Scholar
  82. Zanetta J-P, Sarlieve LL, Mandel P, Vincendon G, Gombos G, (1977a) Fractionation of glycoproteins associated to adult rat brain myelin fractions. J Neurochem 29: 827–838PubMedCrossRefGoogle Scholar
  83. Zanetta J-P, Sarlieve LL, Reeber A, Vincendon G, Gombos G, (1977b) A protein fraction enriched in all myelin associated glycoproteins from adult rat central nervous system. J Neurochem 29: 355–357PubMedCrossRefGoogle Scholar
  84. Zanetta J-P, Roussel G, Ghandour MS, Vincendon G, Gombos G, (1978) Postnatal development of rat cerebellum: massive and transient accumulation of Concanavalin A binding glycoproteins in parallel fiber axolemma. Brain Res 142: 301–319PubMedCrossRefGoogle Scholar
  85. Zanetta J-P, Dontenwill M, Meyer A, Roussel G, (1985a) Isolation and immunohistochemical localization of a lectin like molecule from the rat cerebellum. Dev Brain Res 17: 233–243CrossRefGoogle Scholar
  86. Zanetta J-P, Dontenwill M, Reeber A, Vincendon G, Legrand CH, Clos J, Legrand J, (1985b) ConA-binding glycoproteins in the developing cerebellum of control hypothyroid rats. Develop Brain Res 21: 1–6CrossRefGoogle Scholar
  87. Zanetta J-P, Meyer A, Kuchler S, Vincendon G, (1987a) Isolation and immunochemical study of a soluble cerebellar lectin delineating its structure and function. J Neurochem 49: 1250–1257PubMedCrossRefGoogle Scholar
  88. Zanetta J-P, Bingen A, Dontenwill-Kieffer M, Reeber A, Meyer A, Vincendon G, (1987b) Cerebellar lectin R1 is related to the receptor of circulating mannosyl glycoproteins of liver sinusoidal cells. Cell Molec Biol 33: 423–434Google Scholar
  89. Zanetta J-P, Dontenwill M, Reeber A, Vincendon G, (1987c) Expression of recognition molecules in the cerebellum of young and adult rats. NATO ASI Serie H 2: 92– 104Google Scholar
  90. Zanetta J-P, Kuchler S, Marschal P, Zaepfel M, Meyer A, Badache A, Reeber A, Lehmann S, Vincendon G, (1990) Role of an endogenous mannosyl lectin in myelination and stabilization of myelin structure. NATO ASI Series H 43: 433–450Google Scholar
  91. Zanetta J-P, Staedel C, Kuchler S, Zaepfel M, Meyer A, Vincendon G, (1991) Malignant transformation in hepatocytes is associated xwith the general increase of glycoprotein ligands specifically binding to the endogenous lectin CSL. Carbohyd Res 211 in pressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J.-P. Zanetta
    • 1
  • S. Kuchler
    • 1
  • S. Lehmann
    • 1
  • P. Marschal
    • 1
  • M. Zaepfel
    • 1
  • A. Meyer
    • 1
  • A. Badache
    • 1
  • A. Reeber
    • 1
  • G. Vincendon
    • 1
  1. 1.Centre de Neurochimie du CNRSStrasbourg cedexFrance

Personalised recommendations