Skip to main content

Coronary Hemodynamics and Myocardial Metabolism in Sepsis and Septic Shock

  • Chapter

Abstract

The heart is an exclusively aerobic organ whose main source of energy derives from oxidative phosphorylation. It may incur only a small oxygen debt, myocardial energy reserves being small, after which myocardial dysfunction occurs. Normalized to weight, the heart has one of the highest rates of oxygen consumption of the organism, and this may be multiplied four- to sixfold during physical exercise (Braunwald 1971). Consequently, metabolic needs are the primary factor regulating coronary blood flow. In critical conditions, the coronary circulation must face two constraints: one being to respond to increased myocardial oxygen demand secondary to increased myocardial work by an increased myocardial oxygen consumption, the second being to deliver adequate quantities of oxygen in unfavorable conditions of myocardial oxygen delivery (Marcus 1983). When compensatory mechanisms have been exhausted, an 10% reduction of myocardial oxygen delivery suffices to induce myocardial dysfunction. It is therefore important to determine whether myocardial dysfunction in sepsis is due to an unrecognized hypoxia, particularly when hypotension occurs. The purpose of this review is to analyze recent studies that have given important insights into the understanding of this complex pathophysiology, especially during sepsis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bache RJ, Vrobel TR, Ring WS, Emery RW, Andersen RW (1981) Regional myocardial blood flow during exercise in dogs with chronic left ventricular hypertrophy. Circ Res 48:76–87.

    PubMed  CAS  Google Scholar 

  • Baer RW, Vlakahes GJ, Uhlig PN, Hoffman JIE (1987) Maximum myocardial oxygen transport during anemia and polycythemia in dogs. Am J Physiol 252:H1086–H1095.

    PubMed  CAS  Google Scholar 

  • Bassenge E, Busse R (1988) Endothelial modulation of coronary tone. Prog Cardiovasc Dis 30:349–380.

    Article  PubMed  CAS  Google Scholar 

  • Bing OHL, Matsushita S, Fanburg BL, Levine HJ (1971) Mechanical properties of rat cardiac muscle during experimental hypertrophy. Circ Res 28:234–245.

    PubMed  CAS  Google Scholar 

  • Bohrs CT, Turbow ME, Kolmen SN, Traber DL (1976) Coronary blood flow alterations in endotoxin shock and the response to dipyridamole. Circ Shock 3: 281–286.

    Google Scholar 

  • Braunwald E (1971) Control of myocardial oxygen consumption. Physiologic and clinical considerations. Am J Cardiol 27:416–432.

    Article  PubMed  CAS  Google Scholar 

  • Brazier J, Cooper N, Maloney JV, Buckberg G (1974) The adequacy of myocardial oxygen delivery in acute normovolemic anemia. Surgery 75:508–516.

    PubMed  CAS  Google Scholar 

  • Camici P, Ferrannini E, Opie LH (1989) Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 32:217–238.

    Article  PubMed  CAS  Google Scholar 

  • Chilian WM, Eastham CL, Marcus ML (1986) Microvascular distribution of coronary vascular resistance in the beating left ventricle. Am J Physiol 251:H779–H788.

    PubMed  CAS  Google Scholar 

  • Crystal GJ, Salem MR (1988) Myocardial oxygen consumption and segmental shortening during selective coronary hemodilution in dogs. Anesth Analg 67:500–508.

    PubMed  CAS  Google Scholar 

  • Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73:637–644.

    Article  PubMed  CAS  Google Scholar 

  • Dhainaut JF (1986) Effects of the combination of dobutamine and dopamine on hemodynamics and coronary circulation in human septic shock. Br J Clin Pract 40 [Suppl 45]:59–66.

    Google Scholar 

  • Dhainaut JF (1989) Myocardial depressant substances as mediators of early cardiac dysfunction in septic shock. J Crit Care 4:1–3.

    Article  Google Scholar 

  • Dhainaut JF, Huyghebaert MF (1987) Coronary hemodynamics and myocardial metabolism in septic shock. In: Vincent JL, Thijs LG (eds) Septic shock: European view. Springer, Berlin Heidelberg New York, pp 139–147.

    Chapter  Google Scholar 

  • Dhainaut JF, Huyghbebaert MF, Monsallier JF et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose and ketones in human septic shock. Circulation 75: 533–541.

    Article  PubMed  CAS  Google Scholar 

  • Dhainaut JF, Schremmer B, Lanore JJ (1991) The coronary circulation and the myocardial oxygen supply/uptake relationship: a short review. J Crit Care 6:52–60.

    Article  Google Scholar 

  • Dole WP, Nuno DW (1986) Myocardial oxygen tension determines the degree and pressure range of coronary autoregulation. Circ Res 59:202–215.

    PubMed  CAS  Google Scholar 

  • Drexler H, Zeiler AM, Wollschläger H et al (1989) Flow-dependent coronary artery dilatation in humans. Circulation 80:466–474.

    Article  PubMed  CAS  Google Scholar 

  • Dunn JM, Kirsh MM, Harness J, Lee R, Straker J, Sloan H (1974) The role of assisted circulation in the management of endotoxin shock. Ann Thorac Surg 17: 574–583.

    Article  Google Scholar 

  • Eckenhoff JE, Hackenschiel JH, Landmesser CM, Harmel M (1947) Cardiac oxygen metabolism and control of the coronary circulation. Am J Physiol 149:634–649.

    PubMed  CAS  Google Scholar 

  • Elkins RC, McCurdy JR, Brown PP, Greenfield LJ (1973) Effects of coronary perfusion on myocardial performance during endotoxin shock. Surg Gynecol Obstet 137:991–996.

    PubMed  CAS  Google Scholar 

  • Fedor JM, Rembert JC, McIntosh DM et al (1980) Effects of exercise-and pacing-induced tachycardia on coronary collateral flow in the awake dog. Circ Res 46:214–220.

    PubMed  CAS  Google Scholar 

  • Feigl EO (1983) Coronary physiology. Physiol Rev 63: 1–205.

    PubMed  CAS  Google Scholar 

  • Griffith TM, Lewis MJ, Newby AC, Henderson AH (1988) Endothelium-derived relaxing factor. J Am Coll Cardiol 12:797–806.

    Article  PubMed  CAS  Google Scholar 

  • Guyton RA, McClenathan JH, Newman GE et al (1977) Significance of subendocardial S-T segment elevation caused by coronary stenosis in the dog. Am J Cardiol 40:373–380.

    Article  PubMed  CAS  Google Scholar 

  • Hazelwood RL, Ullrick WC (1961) Glycogen mobilization and work in the rat heart. Am J Physiol 200: 999–1008.

    PubMed  CAS  Google Scholar 

  • Heineman FW, Grayson J (1985) Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 249:H1216–H1223.

    PubMed  CAS  Google Scholar 

  • Hinshaw LB, Archer LT, Spitzer JJ, Black MR, Peyton MD, Greenfield LJ (1974) Effects of coronary hypotension and endotoxin on myocardial performance. Am J Physiol 227:1051–1057.

    PubMed  CAS  Google Scholar 

  • Hoffman JIE (1987a) Transmural myocardial perfusion. Prog Cardiovasc Dis 29:429–464.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JIE (1987b) A critical review of coronary reserve. Circulation 75 [Suppl I]:I–6–11.

    Google Scholar 

  • Honing CP (1988) Modern cardiovascular physiology, 2nd edn. Little Brown, Boston, pp 191–202.

    Google Scholar 

  • Jan KJ, Chien S (1977) Effect of hematocrit variations on coronary hemodynamics and oxygen utilization. Am J Physiol 233:H106–H113.

    PubMed  CAS  Google Scholar 

  • Kako K, Dubuc MJG (1968) Changes in esterified fatty acids in the isolated, perfused rabbit heart. Can J Biochem 46:1241–1249.

    Article  PubMed  CAS  Google Scholar 

  • Klein DM, Gibbons DA, Kober PM, Raymond RM (1984) Myocardial metabolism and hemodynamics during endotoxin shock in the unanesthetized dog (abstract). Circ Shock 13:95.

    Google Scholar 

  • Kleinman WM, Krause SM, Hess ML (1980) Differential subendocardial perfusion and injury during the course of gram-negative endotoxemia. Adv Shock Res 4:139–144.

    PubMed  CAS  Google Scholar 

  • Knabb RM, Bacchus AN, Rubio R, Berne RM (1983) Consistent parallel relationships among myocardial oxygen consumption, coronary blood flow, and pericardial infusate adenosine concentration with various interventions and β-blockade in the dog. Circ Res 53:33–41.

    PubMed  CAS  Google Scholar 

  • Krasney JA (1971) Regional circulatory responses to arterial hypoxia in the anesthesized dog. Am J Physiol 220:699–704.

    PubMed  CAS  Google Scholar 

  • Lang CH, Bagby GJ, Ferguson JL, Spitzer JJ (1984) Cardiac output and redistribution of organ blood flow in hypermetabolic sepsis. Am J Physiol 246:R331–R347.

    PubMed  CAS  Google Scholar 

  • Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechano-transducers? Nature 325:811–813.

    Article  PubMed  CAS  Google Scholar 

  • Marcus ML (1983) The coronary circulation in health and disease. McGraw-Hill, New York.

    Google Scholar 

  • Marcus ML, Harrisson DG, Chillian WM et al (1987) Alterations in the coronary circulation in hypertrophied ventricles. Circulation 75 [Suppl I]:I–19–26.

    Google Scholar 

  • Mark AL, Abboud FM, Schmid PG, Heistad DD, Mayer HE (1972) Differences in direct effects of adrenergic stimuli on coronary, cutaneous, and muscular vessels. J Clin Invest 51:279–286.

    Article  PubMed  CAS  Google Scholar 

  • Markham Rv, Winniford MD, Firth BG et al (1983) Symptomatic electrocardiographic, metabolic, and hemodynamic alterations during pacing induced myocardial ischemia. Am J Cardiol 51:1589–1594.

    Article  PubMed  Google Scholar 

  • McDonough, Lang CH, Spitzer JJ (1985) The effect of hyperdynamic sepsis on myocardial performance. Circ Shock 15:247–259.

    PubMed  CAS  Google Scholar 

  • Miller WP, Shimamoto N, Nellis S, Liedtke AJ (1987) Coronary hyperperfusion and myocardial metabolism in isolated and intact hearts. Am J Physiol 253:H1271–H1278.

    PubMed  CAS  Google Scholar 

  • Mosher P, Ross J Jr, MaFacte PA et al. (1964) Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14:250–259.

    PubMed  CAS  Google Scholar 

  • Most AS, Gorlin R, Soeldner JS (1972) Glucose extraction by the human myocardium during pacing stress. Circulation 45:92–96.

    PubMed  CAS  Google Scholar 

  • Mueller H, Ayres SM, Gregory JJ, Gianelli S Jr, Grace WJ (1970) Hemodynamics, coronary blood flow and myocardial metabolism in coronary shock. J Clin Invest 49:1885–1902.

    Article  PubMed  CAS  Google Scholar 

  • Murray JF, Rapaport E (1972) Coronary blood flow and myocardial metabolism in acute experimental anaemia. Cardiovasc Res 6:360–367.

    Article  PubMed  CAS  Google Scholar 

  • Neely JR, Rovetto MJ, Oram JF (1972) Myocardial utilization of carbohydrate and lipids. Prog Cardiovas Dis 15:289–329.

    Article  CAS  Google Scholar 

  • Olson RE, Hoeschen RJ (1967) Utilization of endogenous lipid by the isolated perfused rat heart. Biochem J 103:796–802.

    PubMed  CAS  Google Scholar 

  • Opie LH (1968) Metabolism of the heart in health and disease. I. Am Heart J 76:685–698.

    Article  PubMed  CAS  Google Scholar 

  • Opie LH (1969a) Metabolism of the heart in health and disease. II. Am Heart J 77:100–122.

    Article  PubMed  CAS  Google Scholar 

  • Opie LH (1969b) Metabolism of the heart in health and disease. III. Am Heart J 77:383–410.

    Article  PubMed  CAS  Google Scholar 

  • Parker MM, Schelhamer JH, Bacharach SL et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100: 483–491.

    PubMed  CAS  Google Scholar 

  • Pohl U, Holtz J, Busse R, Bassenge E (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8:37–44.

    PubMed  CAS  Google Scholar 

  • Rose CP, Goresky CA (1974) Constraints on the uptake of labeled palmitate by the heart. Circ Res 41: 534–545.

    Google Scholar 

  • Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endocardial-derived relaxing factor. Am J Physiol 250:H1145–1149.

    PubMed  CAS  Google Scholar 

  • Saito D, Steinhardt CR, Nison DG, Ollsson RA (1981) Intracoronary adenosine deaminase reduces canine myocardial reactive hyperemia. Circ Res 49: 1262–1267.

    PubMed  CAS  Google Scholar 

  • Schremmer B, Dhainaut JF (1990) Regulation of myocardial oxygen delivery. Intensive Care Med 16 [Suppl 2]: S157–S163.

    Article  PubMed  Google Scholar 

  • Schumacker PT, Cain SM (1987) The concept of critical oxygen delivery. Intensive Care Med 13:223–229.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz GG, McHale PA, Greenfield JC (1982) Coronary vasodilation after a single ventricular extra-activation in the conscious dog. Circ Res 50:38–46.

    PubMed  CAS  Google Scholar 

  • Shaw RF, Mosher P, Ross J Jr et al (1962) Physiologic principles of coronary perfusion. J Thorac Cardiovasc Surg 44:608–616.

    PubMed  CAS  Google Scholar 

  • Sobel BE, Spann JFJr, Pool PE, Sonnenblick EH, Braunwald E (1967) Normal oxydative phosphorylation in mitochondria from the failing heart. Circ Res 21:335–363.

    Google Scholar 

  • Spitzer JJ (1974) Effect of lactate infusion on canine myocardial free fatty acid metabolism in vivo. Am J Physiol 226:213–217.

    PubMed  CAS  Google Scholar 

  • Spitzer JJ (1979) Lipid metabolism in endotoxin shock. Circ Shock [Suppl] 1:69–76.

    CAS  Google Scholar 

  • Spitzer JJ, Spitzer JA (1972) Myocardial metabolism in dogs during hemorrhagic shock. Am J Physiol 222:101–105.

    PubMed  CAS  Google Scholar 

  • Spitzer JJ, Bechtel AA, Archer LT, Black MR, Hinshaw LB (1974) Myocardial substrate utilization in dogs following endotoxin administration. Am J Physiol 227:132–136.

    PubMed  CAS  Google Scholar 

  • Stowe DF, Mathey DG, Moores WY et al (1978) Segment stroke work and metabolism depend on coronary blood flow in the pig. Am J Physiol 234:H597–H607.

    PubMed  CAS  Google Scholar 

  • Vanhoutte PM, Shimokawa H (1989) Endothelium-derived relaxing factor and coronary vasospasm. Circulation 80:1–9.

    Article  PubMed  CAS  Google Scholar 

  • von Restorff W, Höfling B, Holtz J, Bassenge E (1975) Effect of increased blood fluidity through hemodilution on coronary circulation at rest and during exercise in dogs. Pflugers Arch 357:15–24.

    Article  Google Scholar 

  • Walley KR, Becker CJ, Hogan RA, Teplinsky K, Wood LDH (1988) Progressive hypoxemia limits left ventricular oxygen consumption and contractility. Circ Res 63:849–859.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dhainaut, JF., Dall’Ava, J., Mira, J.P. (1993). Coronary Hemodynamics and Myocardial Metabolism in Sepsis and Septic Shock. In: Schlag, G., Redl, H. (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76736-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76736-4_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76738-8

  • Online ISBN: 978-3-642-76736-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics