Invertebrate Auditory Receptors

  • H. Römer
  • J. Tautz
Part of the Advances in Comparative and Environmental Physiology book series (COMPARATIVE, volume 10)

Abstract

If we define ears as any structure that can detect sound waves, then a review of auditory receptors in arthropods is faced with the problem of treating a great diversity of sound waves employed in this large taxon, either for social communication, or for the detection of predators or prey. Hearing may then include the detection of sound waves in air or water, the various kinds of waves in solids, at the water/air interface etc. At the same time, there is an enormous variety of mechanoreceptors involved in the detection of sound, and some of these are not even specialized for detecting a particular kind of sound. For example, any arthropod sensillum that usually monitors stress or strain in the cuticle may in addition respond to substrate vibrations. The sensory organ in the second segment of the antenna (Johnston’s organ) may function in the near-field as a displacement sound receptor in mosquitoes and Drosophila (Ewing 1978), as a device for autocommunicative echolocation in gyrinid beetles using water surface waves (Rudolph 1967; Tucker 1969) or as a sense organ involved in the regulation of insect flight or the control of swimming behaviour (Burkhardt and Schneider 1957; Gewecke et al. 1974; Gewecke 1980), to mention only a few. Considerations of space prevent us from reviewing the great variety of receptor types in arthropods, and we will focus here on receptors responding to airborne sound and to substrate vibrations. However, at the end of this chapter we offer the reader a list of articles dealing with aspects of hearing in arthropods that are not covered in this review.

Keywords

Vortex Attenuation Propa Respiration Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams WB (1972) Mechanical tuning of the acoustic receptor of Prodenia eridania (Cra- mer)(Noctuidae) J Exp Biol 57:297–304Google Scholar
  2. Aicher B, Tautz J (1990) Vibrational communication in the fiddler crab, XJca pugilator. I. Signal transmission through the substratum. J Comp Physiol 166:345–353Google Scholar
  3. Aicher B, Markl H, Masters WM, Kirschenlohr HL (1983) Vibration transmission through the walking legs of the fiddler crab, Uca pugilator (Brachyura, Ocypodidae) as measured by Laser Doppler Vibrometry. J Comp Physiol 150:483–491Google Scholar
  4. Autrum H (1936) Über Lautäußerungen und Schallwahrnehmung bei Arthropoden. I. Untersuchungen an Ameisen. Eine allgemeine Theorie der Schallwahrnehmung bei Arthropoden. Z Vergl Physiol 23:332–373Google Scholar
  5. Autrum H (1940) Über Lautäußerungen und Schallwahrnehmung bei Arthropoden. II. Das Richtungshören von Locusta und der Versuch einer Hörtheorie für Tympanalorgane vom Locustidentyp. Z Vergl Physiol 28:326–352Google Scholar
  6. Autrum H (1941) Über Gehör und Erschütterungssinn bei Locustiden. Z Vergl Physiol 28:580–637Google Scholar
  7. Autrum H, Schneider W (1948) Vergleichende Untersuchungen über den Erschütterungssinn der Insekten. Z Vergl Physiol 31:77–88Google Scholar
  8. Bailey WJ (1990) The ear of the bushcricket. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematica and evolution. Crawford House Press, Bathhurst, pp 217–247Google Scholar
  9. Ball EE, Hill KG (1978) Functional development of the auditory system of the cricket, Teleogryllus commodus. J Comp Physiol 127:131–138Google Scholar
  10. Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys. Araneae). Z Zellforsch 112:212–246PubMedGoogle Scholar
  11. Barth FG (1972) Die Physiologie der Spaltsinnesorgane. II. Funktionelle Morphologie eines Mechanoreceptors. J Comp Physiol 81:159–186Google Scholar
  12. Barth FG (1985) Neuroethology of the spider vibration sense. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. Barth FG, Geethabali (1982) Spider vibration receptors: threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol 148:175–185Google Scholar
  14. Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys. (Chelicerata, Araneae). Z Morphol Ökol Tiere 68:343–369Google Scholar
  15. Barth FG, Wadepuhl M (1975) Slit sense organs in the scorpion leg (Androctonus australis L., Buthidae). J Morphol 145:209–228Google Scholar
  16. Belton P (1974) An analysis of direction finding in male mosquitoes. In: Barton Brown L (ed) Experimental analysis of insect behaviour. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Bennet-Clark HC (1971) Acoustics of insect song. Nature (Lond) 234:255–259Google Scholar
  18. Bennet-Clark HC (1984) Insect hearing: acoustics and transduction. In: Lewis T (ed) Insect communication. Academic Press, London, pp 49–82Google Scholar
  19. Bleckmann H (1988) Perception of water surface waves: how surface waves are used for prey identification, prey localization, and intraspecific communication. In: Ottosen D (ed) Progress in sensory physiology 5. Springer, Berlin Heidelberg New York Tokyo, pp 147–166Google Scholar
  20. Bleckmann H, Barth FG (1984) Sensory ecology of the semiaquatic spider Dolometes triton. II. Release of predatory behavior by water surface waves. Behav Ecol Sociobiol 14:303–312Google Scholar
  21. Boyan GS (1979) Directional responses to sound in the central nervous system of the cricket Teleogryllus commodus (Orthoptera: Gryllidae). J Comp Physiol 130:137–150Google Scholar
  22. Breckow J, Sippel M (1985) Mechanics of the transduction of sound in the tympanal organ of adults and larvae of locusts. J Comp Physiol 157:619–629Google Scholar
  23. Brownell PH (1977) Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197:479–482PubMedGoogle Scholar
  24. Brownell PH, Farley RD (1979a) Prey-localizing behaviour of the nocturnal desert scorpion, Paruroctonus mesaensis: orientation to substrate vibrations. Anim Behav 27:185–193Google Scholar
  25. Brownell PH, Farley RD (1979b) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J Comp Physiol 131:23–30Google Scholar
  26. Brownell PH, Farley RD (1979c) Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization. J Comp Physiol 131:31–38Google Scholar
  27. Budelmann B (1990) Hearing of non-arthropod invertebrates. In: Fay RR, Popper AN, Webster DB (eds) Evolutionary biology of hearing. Springer, Berlin Heidelberg New York (in press)Google Scholar
  28. Bullock TH (1984) Comparative neuroethology of startle, rapid escape, and giant fibre-mediated responses. In: Eaton RC (ed) Neural mechanisms of startle behavior. Plenum Press, New York, ppi-iiGoogle Scholar
  29. Burkhardt D (1960) Die Eigenschaften und Funktionstypen der Sinnesorgane. Ergeb Biol 22:226–267Google Scholar
  30. Burkhardt D, Schneider G (1957) Die Antennen von Calliphora als Anzeiger der Fluggeschwindigkeit. Z Naturforsch 12:139–143Google Scholar
  31. Camhi J (1980) The escape system of the cockroach. Sci Am 243:158–172Google Scholar
  32. Camhi J, Tom W (1978) The escape behaviour of the cockroach Periplaneta americana I. Turning response to wind puffs. J Comp Physiol 128:193–201Google Scholar
  33. Clements AN (1963) The physiology of mosquitoes. Pergamon Press, New YorkGoogle Scholar
  34. Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlea hair cells. J Physiol 312:377–422PubMedGoogle Scholar
  35. Dambach M (1972) Vibrationssinn der Grillen. I. Schwellenmessungen an Beinen freibeweglicher Here. II. Antworten von Neuronen im Bauchmark. J Comp Physiol 79:281–324Google Scholar
  36. Dambach M, Lichtenstein L (1978) Zur Ethologie der afrikanischen Grille Phaeophilacris spectrum Saussure. Z Tierpsychol 46:14–29Google Scholar
  37. Dragsten PR, Webb WW, Paton JA, Capranica RR (1974) Auditory membrane vibrations: measurements at sub-Angstrom levels by optical heterodyne spectroscopy. Science 185:55–57PubMedGoogle Scholar
  38. Doolan JM, Young D (1989) Relative importance of song parameters during flight phonotaxis and courtship in the bladder cicada Cystosoma saundersii. J Exp Biol 141:113–131Google Scholar
  39. Edwards JS, Palka J (1974) The cerci and abdominal giant fibres of the house cricket, Acheata domesticus. Anatomy and physiology of normal adults. Proc R Soc Lond B 185:83–103PubMedGoogle Scholar
  40. Eggers F (1928) Die stiftführenden Sinnesorgane. Zool Bausteine 2:354Google Scholar
  41. Erler G, Thurm U (1981) Dendritic impulse initiation in an epithelial sensory neuron. J Comp Physiol 142:237–249Google Scholar
  42. Ewing AW (1978) The antenna of Drosophila as a “love song” receptor. Physiol Entomol 3:33–36Google Scholar
  43. Fletcher NH, Thwaites S (1979) Acoustical analysis of the auditory system of the cricket Teleogryllus commodus (Walker). J Acoust Soc Am 62:350–357Google Scholar
  44. Gaffal KP, Hchy H, Theiss J, Seelinger G (1975) Structural polarities in mechanosensitive sensilla and their influence on stimulus transmission (Arthropoda). Zoomorphologie 82:79–103Google Scholar
  45. Gewecke M (1980) Steuerung des Schwimmverhaltens durch die Antennen beim Teichschwimmer (Colymbetes fuscus L., Dytiscidae, Coleoptera). Verh Dtsch Zool Ges 1980:336Google Scholar
  46. Gewecke M, Heinzel H-G, Philippen J (1974) Role of antennae of the dragonfly Orthetrum cancellarum in flight control. Nature (Lond) 249:584–585Google Scholar
  47. Gnatzy W, Schmidt K (1971) Die Feinstruktur der Sinneshaare auf den Cerci von Gryllus bimaculatus Deg. (Saltatoria, Gryllidae). I. Faden- und Keulenhaare. Z Zellforsch 122:190–209PubMedGoogle Scholar
  48. Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cercal filiform hairs in Gryllus. Cell Tissue Res 213:441–463PubMedGoogle Scholar
  49. Gray EG (1960) The fine structure of the insect ear. Philos Trans R Soc B 243:75–94Google Scholar
  50. Grosch A, Callender F, Petersen M, Cokl A, Kalmring K (1985) Vibration receptors of larvae and of imagines in locusts: location on the legs, central projections and physiology. In: Kalmring K, Eisner N (eds) Acoustic and vibrational communication in insects. Parey, Hamburg, pp 151–161Google Scholar
  51. Hardin BO, Richard FE (1963) Elastic wave velocities in granular soils. J Mech Found Div, Proc Am Soc Civil Eng SMI 3407:33–65Google Scholar
  52. Harrison L, Horseman G, Lewis B (1988) The coding of the courtship song by an identified auditory neurone in the cricket Teleogryttus oceanicus (Le guillou). J Comp Physiol 163:215–225Google Scholar
  53. Hedwig B (1986) On the role of stridulation of plurisegmental interneurons of the acridid grasshopper Omocestus viridulus L. II. Anatomy and physiology of ascending and T-shaped interneurons. J Comp Physiol 158:429–444Google Scholar
  54. Hedwig B (1988) Activation and modulation of auditory receptors in Locusta migratoria by respiratory movements. J Comp Physiol 162:237–246Google Scholar
  55. Hedwig B (1989) Modulation of auditory information processing in tethered flying locusts. J Comp Physiol 164:409–422Google Scholar
  56. Hedwig B, Land F, Eisner N (1988) The interference of sound and movement stimuli in tympanal receptors of Locusta migratoria. J Comp Physiol 163:243–252Google Scholar
  57. Heinzel H-G, Dambach M (1987) Travelling air vortex rings as potential communication signals in a cricket. J Comp Physiol 160:79–88Google Scholar
  58. Hill KG (1983a) The physiology of locust auditory receptors. I. Discrete depolarizations of receptor cells. J Comp Physiol 152:475–482Google Scholar
  59. Hill KG (1983b) The physiology of locust auditory receptors. II. Membrane potentials associated with the response of the receptor cell. J Comp Physiol 152:483–493Google Scholar
  60. Hill KG, Boyan GS (1977) Sensitivity to frequency and direction of sound in the auditory system of crickets (Gryllidae). J Comp Physiol 121:79–97Google Scholar
  61. Hill KG, Oldfield BP (1981) Auditory function in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 142:169–180Google Scholar
  62. Horridge GA (1960) Pitch discrimination in Orthoptera (Insecta) demonstrated by responses of central auditory neurons. Nature (Lond) 185:623–624Google Scholar
  63. Hoy RR (1989) Startle, categorial response, and attention in acoustic behavior in crickets. Annu Rev Neurosci 12:355–375PubMedGoogle Scholar
  64. Huber F (1983) Neural correlates of orthopteran and cicada phonotaxis. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 108–135Google Scholar
  65. Huber F, Wohlers D, Moore TE (1980) Auditory nerve and interneurone responses to natural sounds in several species of cicadas. Physiol Entomol 5:25–45Google Scholar
  66. Inglis M, Oldfield BP (1988) Tonotopic organisation of the auditory organ of the locust Valanga irregularis (Walker). J Comp Physiol 164:49–53Google Scholar
  67. Kämper G (1984) Abdominal ascending interneurons in crickets: responses to sound at the 30-Hz calling song frequency. J Comp Physiol 155:507–520Google Scholar
  68. Keppler E (1958) Uber das Richtungshören von Stechmücken. Z Naturforsch 13:280–284Google Scholar
  69. Kleindienst HU, Koch UT, Wohlers DW (1981) Analysis of the cricket auditory system by acoustic stimulation using a closed sound field. J Comp Physiol 141:283–296Google Scholar
  70. Larsen ON (1981) Mechanical time resolution in some insect ears. II. Impulse sound transmission in acoustic tracheal tubes. J Comp Physiol 143:297–304Google Scholar
  71. Larsen ON, Michelsen A (1978) Biophysics of the ensiferan ear. III. The cricket ear as a four-input system. J Comp Physiol 123:217–227Google Scholar
  72. Lee WB, Solomon SC (1975) Inversion schemes for surface wave attenuation and Q in the crust and the mantle. Geophys J R Astr Soc 43:47–71Google Scholar
  73. Lewis B (1974) The physiology of the tettigoniid ear, I-IV. J Exp Biol 60:821–869PubMedGoogle Scholar
  74. Lewis B (1983) Directional cues for auditory location. In: Lewis DB (ed) Bioacoustics: a comparative approach. Academic Press, London, pp 233–260Google Scholar
  75. Markl H (1978) Adaptive radiation of mechanoreception. In: Ali MA (ed) Sensory ecology. Review and perspectives. Plenum Press, New York, pp 319–344Google Scholar
  76. Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioural physiology. Springer, Berlin Heidelberg New York, pp 332–353Google Scholar
  77. Markl H, Tautz J (1975) The sensitivity of hair receptors in caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae) to particle movement in a sound field. J Comp Physiol 99:79–87Google Scholar
  78. Meier T, Reichert H (1990) Embryonic development and evolutionary origin of the orthopteran auditory organs. J Neurobiol 21:592–610PubMedGoogle Scholar
  79. Michel K (1974) Das Tympanalorgan von Gryllus bimaculatus deGeer (Saltatoria, Gryllidae). Z Morphol Tiere 77:285–315Google Scholar
  80. Michelsen A (1966) Pitch discrimination in the locust ear: observations on single sense cells. J Insect Physiol 12:1119–1131PubMedGoogle Scholar
  81. Michelsen A (1971) The physiology of the locust ear. I Frequency sensitivity of single cells in the isolated ear. II Frequency discrimination based on resonances in the tympanum. Ill Acoustical properties of the intact ear. Z Vergl Pysiol 71:49–128Google Scholar
  82. Michelsen A (1985) Time resolution in auditory systems. Springer, Berlin Heidelberg New YorkGoogle Scholar
  83. Michelsen A, Larsen ON (1978) Biophysics of the ensiferan ear. I. Tympanal vibrations in bushcrickets (Tettigoniidae) studied with laser vibrometry. J Comp Physiol 123:193–203Google Scholar
  84. Michelsen A, Larsen ON (1983) Strategies for acoustic communication in complex environments. In: Huber F, Markl H (eds) Neuroethology and behavioural physiology. Springer, Berlin Heidelberg New York, pp 321–332Google Scholar
  85. Michelsen A, Larsen ON (1985) Hearing and sound. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 6. Pergamon Press, Oxford, pp 496–556Google Scholar
  86. Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281Google Scholar
  87. Michelsen A, Kirchner WH, Lindauer M (1986) Sound and vibrational signals in the dance language of the honeybee, Apis mellifera. Behav Ecol Sociobiol 18:207–212Google Scholar
  88. Michelsen A, Towne WF, Kirchner WH, Kryger P (1987) The acoustic near field of a dancing honeybee. J Comp Physiol 161:633–643Google Scholar
  89. Miller LA (1970) Structure of the green lacewing tympanal organ (Chrysopa carnea, Neuroptera). J Morphol 131:359–382Google Scholar
  90. Miller LA (1971) Physiological responses of green lacewings (Chrysopa, Neuroptera) to ultrasound. J Insect Physiol 17:491–506Google Scholar
  91. Miller LA (1977) Directional hearing in the locust Schistocerca gregaria Forskal (Acrididae, Orthoptera). J Comp Physiol 119:85–98Google Scholar
  92. Moiseff A, Pollack GS, Hoy RR (1978) Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sci USA 75:4052–4056PubMedGoogle Scholar
  93. Mörchen A, Rheinlaender J, Schwartzkopff J (1978) Latency shift in insect auditory nerve fibers. Naturwissenschaften 65:656Google Scholar
  94. Moran DT, Rowley III C (1975) High voltage and scanning electron microscopy of the site of stimulus reception of an insect mechanoreceptor. J Ultrastruct Res 50:38–46PubMedGoogle Scholar
  95. Murphey RK (1971) Sensory aspects of the control of orientation to prey by the waterstrider, Gerris remigis. Z Vergl Physiol 72:168–185Google Scholar
  96. Oldfield BP (1980) Accuracy of orientation in female crickets, Teleogryllus oceanicus (Gryllidae): dependence on song spectrum. J Comp Physiol 141:93–100Google Scholar
  97. Oldfield BP (1982) Tonotopic organisation of auditory receptors in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 147:461–469Google Scholar
  98. Oldfield BP (1985) The tuning of auditory receptors in bushcrickets. Hearing Res 17:27–35Google Scholar
  99. Oldfield BP, Hill KG (1986) Functional organization of insect auditory sensilla. J Comp Physiol 158:27–34Google Scholar
  100. Payne RS, Roeder KD, Wallman J (1966) Directional sensitivity of the ears of noctuid moths. J Exp Biol 44:17–31PubMedGoogle Scholar
  101. Pringle JWS (1938) Proprioreception in insects. II. The action of the campaniform sensilla on the legs. J Exp Biol 15:114–131Google Scholar
  102. Pumphrey RJ (1940) Hearing in insects. Biol Rev Camb Philos Soc 15:107–132Google Scholar
  103. Ramspeck A, Schultze GA (1938) Die Dispersion elastischer Wellen im Boden. Veröff Inst Dsch Forschungsges Bodenmechanik (Degebo) Techn Hochschule Berlin 6:1–28Google Scholar
  104. Rheinlaender J (1975) Transmission of acoustic information at three neuronal levels in the auditory system of Decticus verrucivorus (Tettigoniidae: Orthoptera). J Comp Physiol 97:1–53Google Scholar
  105. Rheinlaender J (1984) Das akustische Orientierungsverhalten von Heuschrecken, Grillen und Fröschen: eine vergleichende neuro- und verhaltensphysiologische Untersuchung. Habilitationsschrift, BochumGoogle Scholar
  106. Rheinlaender J, Mörchen A (1979) Time-intensity trading’ in locust auditory interneurons. Nature (Lond) 281:672–674Google Scholar
  107. Robert D (1989) The auditory behaviour of flying locusts. J Exp Biol 147:279–301Google Scholar
  108. Roeder KD (1972) Acoustic and mechanical sensitivity of the distal lobe of the pilifer in certain Choerocampine hawkmoths. J Insect Physiol 18:1249–1264Google Scholar
  109. Roeder KD, Treat AE (1957) Ultrasonic reception by the tympanic organs of noctuid moths. J Exp Zool 134:127–157PubMedGoogle Scholar
  110. Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol 109:101–122Google Scholar
  111. Römer H (1987) Representation of auditory distance within a central neuropil of the bushcricket Mygalopsis marki. J Comp Physiol 161:33–42Google Scholar
  112. Römer H, Bailey WJ (1990) Insect hearing in the field. J Comp Biochem Physiol 97A:443–447Google Scholar
  113. Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol 155:249–262Google Scholar
  114. Römer H, Rheinlaender J (1983) Electrical stimulation of the tympanal nerve as a tool for analysing the responses of auditory interneurons in the locust. J Comp Physiol 152:289–296Google Scholar
  115. Ronacher B, Römer H (1985) Spike synchronization of tympanic receptor fibres in a grasshopper (Chorthippus biguttulus L., Acrididae). J Comp Physiol 157:631–642Google Scholar
  116. Rovner JS, Barth FG (1981) Vibratory communication through living plants by a tropical wandering spider. Science 214:464–466PubMedGoogle Scholar
  117. Rudolph P (1967) Zum Ortungsverfahren von Gyrinus substriatus Steph. (Taumelkäfer). Z Vergl Physiol 56:341–375Google Scholar
  118. Schildberger K, Milde JJ, Hörner M (1988) The function of auditory neurons in cricket phonotaxis. II Modulation of auditory responses during locomotion. J Comp Physiol 163:633–640Google Scholar
  119. Schiolten P, Larsen ON, Michelsen A (1981) Mechanical time resolution in some insect ears. I. Impulse responses and time constants. J Comp Physiol 143:289–295Google Scholar
  120. Schmidt H (1954) Die Schallausbreitung in körnigen Substanzen. Acustica 4:639–652Google Scholar
  121. Schmidt M, Gnatzy W (1984) Are the funnel-canal organs the “campaniform sensilla” of the shore crab, Carduus maenas (Decapoda, Crustacea) Cell Tissue Res 237:81–93PubMedGoogle Scholar
  122. Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis in Gryllus campestris L. (Orthoptera, Gryllidae). I. Mechanism of acoustic orientation in intact female crickets. J Comp Physiol 148:431–444Google Scholar
  123. Schnorbus H (1971) Die subgenualen Sinnesapparate von Periplaneta americana: Histologie und Vibrationsschwellen. Z Vergl Physiol 71:14–48Google Scholar
  124. Schwabe J (1906) Beiträge zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica 20:1–154Google Scholar
  125. Schwartzkopff J (1974) Mechanoreception. In: Rockstein M (ed) The physiology of Insecta. Academic Press, New York, pp 273–352Google Scholar
  126. Shimozawa T, Kanou M (1984a) Varieties of filiform hairs: range fractionation by sensory afferents and cercal interneurons of a cricket. J Comp Physiol 155:485–493Google Scholar
  127. Shimozawa T, Kanou M (1984b) The aerodynamics and sensory physiology of range fractionation in the cercal filiform sensilla of the cricket Gryllus bimaculatus. J Comp Physiol 155:495–505Google Scholar
  128. Skudrzyk E (1971) The foundations of acoustics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  129. Spangler HG (1988) Moth hearing, defense, and communication. Ann Rev Entomol 33:59–81Google Scholar
  130. Stephen RO, Bennet-Clark HC (1982) The anatomical and mechanical basis of stimulation and frequency analysis in the locust ear. J Exp Biol 99:279–314Google Scholar
  131. Surlykke A, Larsen ON, Michelsen A (1988) Temporal coding in the auditory receptor of the moth ear. J Comp Physiol 162:367–374Google Scholar
  132. Tautz J (1977) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae). I. Mechanical properties of the receptor hairs. J Comp Physiol 118:13–31Google Scholar
  133. Tautz J (1979) Reception of particle displacement in a medium — an unorthodox sensory capacity. Naturwissenschaften 66:452–461Google Scholar
  134. Tautz J (1989) Medienbewegung in der Sinneswelt der Arthropoden. Fallstudien zu einer Sinnesökologie. In: Lindauer M (ed) Information processing in animals. Fischer, Stuttgart, pp 7–59Google Scholar
  135. Tautz J, Markl H (1978) Caterpillars detect flying wasps by hairs sensitive to airborne vibration. Behav Ecol Sociobiol 4:101–110Google Scholar
  136. Thorson J, Weber T, Huber F (1982) Auditory behaviour of the cricket. II. Simplicity of calling song recognition in Gryllus, and anomalous phonotaxis at abnormal carrier frequencies. J Comp Physiol 146:361–378Google Scholar
  137. Thurm U (1969) General organization of sensory receptors. Rend Scuola Intern Fisica “E. Fermi”. XLIIICorsopp 44–68Google Scholar
  138. Thurm U (1982) Biophysik sensorischer Mechanismen. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin Heidelberg New York Tokyo, pp 681–696Google Scholar
  139. Thurm U, Stedtler A, Foelix R (1975) Reizwirksame Verformungen der Terminalstrukturen eines Mechanorezeptors. Verh Dtsch Zool Ges, Stuttgart pp 37–41Google Scholar
  140. Tischner H, Schief A (1954) Fluggeräusche und Schallwahrnehmung bei Aedes aegypti (Culicidae). Verh Dtsch Zool Ges 1954:453–460Google Scholar
  141. T\icker VA (1969) Wave-making by whirligig beetles (Gyrinidae). Science 166:897–899Google Scholar
  142. von Heiversen D (1972) Gesang des Männchens und Lautschema des Weibchens bei der Feldheuschrecke Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol 81:381–422Google Scholar
  143. von Heiversen D, Rheinlaender J (1988) Interaural intensity and time discrimination in an unrestrained grasshopper: a tentative behavioural approach. J Comp Physiol 162:333–340Google Scholar
  144. Wales W, Clarac F, Dando MR, Laverack MS (1970) Innervation of the receptors present at the various joints of the pereiopods and third maxilliped of Homarus gammarus (L.) and other macruran decapods (Crustacea). Z Vergl Physiol 68:345–384Google Scholar
  145. Wiese K (1974) The mechanoreceptive system of prey localization in Notonecta. II. The principle of prey localization. J Comp Physiol 92:317–325Google Scholar
  146. Yager DD, Hoy RR (1986) The cyclopean ear: a new sense for the praying mantis. Science 231:727–729PubMedGoogle Scholar
  147. Yager DD, Hoy RR (1987) The midline metathoracic ear of the preying mantis, Mantis religiosa. Cell Tissue Res 250:531–541Google Scholar
  148. Young D, Ball E (1974) Structure and development of the auditory system in the prothoracic leg of the cricket Teleogryllus commodus (Walker). I. Adult structure. Z Zellforsch 147:293–312Google Scholar
  149. Young D, Hill KG (1977) Structure and function of the auditory system of the cicada, Cystosoma saundersii. J Comp Physiol 117:23–45Google Scholar
  150. Zhantiev RD, Kalinkina IN, Tshukanov VS (1975) The characteristics of the directional sensitivity of tympanal organs of Gryllus bimaculatus Deg. (Orthoptera, Gryllidae). Rev Ent USSR 54:249–257 (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • H. Römer
    • 1
  • J. Tautz
    • 2
  1. 1.Lehrstuhl für Allgemeine Zoologie und NeurobiologieRuhr-UniversitätBochum 1Germany
  2. 2.Lehrstuhl für TierphysiologieZoologisches Institut der UniversitätWürzburgGermany

Personalised recommendations