Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 10))

Abstract

Cardiovascular mechanoreceptors are sensory nerve endings located throughout the cardiovascular system. These sensory endings are activated by mechanical deformation and transmit impulses to the central nervous system that provide information regarding stretch or filling of visceral organs, e.g., the heart, and changes in vascular pressure or volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud FM, Chapleau MW (1986) “Diastolic silence” of carotid baroreceptors at pulsatile pressures above threshold — role of ionic mechanisms (abstract). Fed Proc 45(3):296

    Google Scholar 

  • Abboud FM, Chapleau MW (1988) Effects of pulse frequency on single-unit baroreceptor activity during sine-wave and natural pulses in dogs. J Physiol (Lond) 401:295–308

    CAS  Google Scholar 

  • Abboud FM, Aylward PE, Floras JS, Gupta BN (1986) Sensitization of aortic and cardiac baroreceptors by arginine vasopressin in mammals. J Physiol (Lond) 377:251–265

    CAS  Google Scholar 

  • Andresen MC, Kunze DL (1987) Ionic sensitivity of baroreceptors. Circ Res 61 (Suppl I):I-66–I-71

    Google Scholar 

  • Andresen MC, Yang M (1989a) Arterial baroreceptor resetting: contributions of chronic and acute processes. Clin Exp Pharmacol Physiol (Suppl) 15:19–30

    Article  CAS  Google Scholar 

  • Andresen MC, Yang M (1989b) Rapid baroreceptor resetting is unaltered by chronic hypertension in rats. Am J Physiol 256 (Heart Circ Physiol 25):H1228–H1235

    PubMed  CAS  Google Scholar 

  • Andresen MC, Krauhs JM, Brown AM (1978) Relationship of aortic wall and baroreceptor properties during development in normotensive and spontaneously hypertensive rats. Circ Res 43:728–738

    PubMed  CAS  Google Scholar 

  • Andresen MC, Kuraoka S, Brown AM (1980) Baroreceptor function and changes in strain sensitivity in normotensive and spontaneously hypertensive rats. Circ Res 47:821–828

    PubMed  CAS  Google Scholar 

  • Angell-James JE (1971a) The effects of changes of extramural, “intrathoracic,” pressure on aortic arch baroreceptors. J Physiol (Lond) 214:89–103

    CAS  Google Scholar 

  • Angell-James JE (1971b) The effects of altering mean pressure, pulse pressure and pulse frequency on the impulse activity in baroreceptor fibres from the aortic arch and right subclavian artery in the rabbit. J Physiol (Lond) 214:65–88

    CAS  Google Scholar 

  • Angell-James JE (1973) Characteristics of single aortic and right subclavian baroreceptor fiber activity in rabbits with chronic renal hypertension. Circ Res 32:149–161

    PubMed  CAS  Google Scholar 

  • Angell-James JE (1974) Arterial baroreceptor activity in rabbits with experimental atherosclerosis. Circ Res 34:27–39

    Google Scholar 

  • Angell-James JE, Daly M de B (1970) Comparison of the reflex vasomotor responses to separate and combined stimulation of the carotid sinus and aortic arch baroreceptors by pulsatile and non-pulsatile pressures in the dog. J Physiol (Lond) 209:257–293

    Google Scholar 

  • Angell-James JE, Daly M de B (1971) Effects of graded pulsatile pressure on the reflex vasomotor responses elicited by changes of mean pressure in the perfused carotid sinus-aortic arch regions of the dog. J Physiol (Lond) 214:51–64

    CAS  Google Scholar 

  • Arndt JO, Dorrenhaus A, Wiecken H (1975) The aortic arch baroreceptor response to static and dynamic stretches in an isolated aorta-depressor nerve preparation of cats in vitro. J Physiol (Lond) 252:59–78

    CAS  Google Scholar 

  • Arndt JO, Morgenstern J, Samodelov L (1977) The physiologically relevant information regarding systemic blood pressure encoded in the carotid sinus baroreceptor discharge pattern. J Physiol (Lond) 268:775–791

    CAS  Google Scholar 

  • Bishop VS, Malliani A, Thoren P (1983) Cardiac mechanoreceptors. In: Shepherd JT, Abboud FM, (eds) Handbook of physiology Sect 2 The cardiovascular system Vol. Ill Peripheral circulation and organ blood flow Pt. 2. Am Physiol Soc, Bethesda, MD, pp 497–555

    Google Scholar 

  • Bronk DW, Stella G (1932) Afferent impulses in the carotid sinus nerve. I. The relation of the discharge from single end organs to arterial blood pressure. J Cell Comp Physiol 1:113–130

    Article  Google Scholar 

  • Bronk DW, Stella G (1935) The response to steady pressures of single end organs in the isolated carotid sinus. Am J Physiol 110:708–714

    Google Scholar 

  • Brown AM (1980) Receptors under pressure. An update on baroreceptors. Circ Res 46:1–10

    PubMed  CAS  Google Scholar 

  • Brown AM, Saum WR, Yasui S (1978) Baroreceptor dynamics and their relationship to afferent fiber type and hypertension. Circ Res 42:694–702

    PubMed  CAS  Google Scholar 

  • Catton WT, Petoe N (1966) A visco-elastic theory of mechanoreceptor adaptation. J Physiol (Lond) 187:35–49

    CAS  Google Scholar 

  • Chapleau MW, Abboud FM (1986) Mechanisms of carotid baroreceptor stimulation with static I and dynamic stretch (abstract). Proc Int Union Physiol Sci 16:43

    Google Scholar 

  • Chapleau MW, Abboud FM (1987) Contrasting effects of static and pulsatile pressure on carotid baroreceptor activity in dogs. Circ Res 61:648–658

    PubMed  CAS  Google Scholar 

  • Chapleau MW, Abboud FM (1989) Determinants of sensitization of carotid baroreceptors by pulsatile pressure in dogs. Circ Res 65:566–577

    PubMed  CAS  Google Scholar 

  • Chapleau MW, Heesch CM, Abboud FM (1987) Prevention or attenuation of baroreceptor resetting by pulsatile pressure during elevated pressure. Hypertension 9 (Suppl III):137–141

    Google Scholar 

  • Chapleau MW, Hajduczok G, Shasby DM, Abboud FM (1988a) Activated endothelial cells in culture suppress baroreceptors in the carotid sinus of dog. Hypertension 11(6) Pt 2:586–590

    Google Scholar 

  • Chapleau MW, Hajduczok G, Abboud FM (1988b) Mechanisms of resetting of arterial baroreceptors: an overview. Am J Med Sci 31(4):327–334

    Article  Google Scholar 

  • Chapleau MW, Hajduczok G, Abboud FM (1989a) Peripheral and central mechanisms of baro-reflex resetting. Clin Exp Pharmacol Physiol (Suppl) 15:31–43

    Article  CAS  Google Scholar 

  • Chapleau MW, Hajduczok G, Abboud FM (1989b) Endothelin suppresses baroreceptor activity: a new mechanism contributing to hypertension? Hypertension (Abstr) 14:336–337

    Google Scholar 

  • Chapleau MW, Johnson SL, Hajduczok G, Abboud FM (1989c) “Rheoreceptors” in the carotid sinus are activated by flow at constant pressure: interactions between flow and pulsatility. Clin Res (Abstr) 37:874A

    Google Scholar 

  • Chapleau MW, Hajduczok G, Abboud FM (1989d) Pulsatile activation of baroreceptors causes central facilitation of baroreflex. Am J Physiol 256 (Heart Circ Physiol 25):H1735–H1741

    PubMed  CAS  Google Scholar 

  • Chapleau MW, Hajduczok G, Abboud FM (1990a) Adaptation of baroreceptors is absent or attenuated during pulsatile compared with static pressure. Am J Physiol (Heart Circ Physiol) (submitted)

    Google Scholar 

  • Chapleau MW, Hajduczok G, Abboud FM (1990b) Mechanism of adaptation of baroreceptors in acute hypertension: role of A-current. Hypertension (Abstr) 16:348

    Google Scholar 

  • Chapleau MW, Hajduczok G, Abboud FM (1991) Resetting of the arterial baroreflex: peripheral and central mechanisms. In: Zucker I, Gilmore J (eds) Reflex control of the circulation. CRC Press, Boca Raton, Florida, pp 165–194

    Google Scholar 

  • Chen HI, Chapleau MW, McDowell TS, Abboud FM (1990) Prostaglandins contribute to activation of baroreceptors in rabbits. Possible paracrine influence of endothelium. Circ Res 67:1394–1404

    Google Scholar 

  • Coleridge HM, Coleridge JCG (1980) Cardiovascular afferents involved in regulation of peripheral vessels. Annu Rev Physiol 42:413–427

    Article  PubMed  CAS  Google Scholar 

  • Coleridge HM, Coleridge JCG, Ginzel KH, Baker DG, Banzett RB, Morrison MA (1976) Stimulation of “irritant” receptors and afferent C-fibres in the lungs by prostaglandins. Lancet 264:451–453

    CAS  Google Scholar 

  • Coleridge HM, Coleridge JCG, Poore ER, Roberts AM, Schultz HD (1984) Aortic wall properties and baroreceptor behaviour at normal arterial pressure and in acute hypertensive resetting in dogs. J Physiol (Lond) 350:309–326

    CAS  Google Scholar 

  • Cowley AW Jr, Monos E, Guyton AC (1974) Interaction of vasopressin and the baroreceptor reflex system in the regulation of arterial blood pressure in the dog. Circ Res 34:505–514

    PubMed  CAS  Google Scholar 

  • Ead HW, Green JH, Neil E (1952) A comparison of the effects of pulsatile and non-pulsatile blood flow through the carotid sinus on the reflexogenic activity of the sinus baroceptors in the cat. J Physiol (Lond) 118:509–519

    CAS  Google Scholar 

  • Edwards C (1983) The ionic mechanisms underlying the receptor potential in mechanoreceptors. In: Grinnell AD, Moody WJ Jr (eds) Neurology and neurobiology, vol 5. The physiology of excitable cells. Liss, New York, pp 497–503

    Google Scholar 

  • Eyzaguirre C, Kuffler SW (1955) Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J Gen Physiol 39:87–120

    Article  PubMed  CAS  Google Scholar 

  • Falardeau P, Martineau A (1983) In vivo production of prostaglandin I2 in Dahl salt-sensitive and salt-resistant rats. Hypertension 5:701–705

    PubMed  CAS  Google Scholar 

  • Felder RB, Heesch CM, Thames MC (1983) Reflex modulation of carotid sinus baroreceptor activity in the dog. Am J Physiol 244 (Heart Circ Physiol 13):H437–H443

    PubMed  CAS  Google Scholar 

  • Frangos JA, Eskin SG, Mclntire LV, Ives CL (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479

    Article  PubMed  CAS  Google Scholar 

  • Fujitsuka N, Hama K, Ito F, Sokabe M (1987) Intramembrane particles and terminal responses following denervation of frog muscle spindles. J Neurocytol 16:185–194

    Article  PubMed  CAS  Google Scholar 

  • Gastrelius S, Grampp W (1983) Kinetics of the TEA and 4-AP sensitive K+ current in the slowly adapting lobster stretch receptor neurone. Acta Physiol Scand 118:125–134

    Article  Google Scholar 

  • Goldman WF, Saum WR (1984) A direct excitatory action of catecholamines on rat aortic baroreceptors in vitro. Circ Res 55:18–30

    PubMed  CAS  Google Scholar 

  • Gordon FJ, Mark AL (1984) Mechanism of impaired baroreflex control in prehypertensive Dahl salt-sensitive rats. Cicr Res 54:378–387

    CAS  Google Scholar 

  • Grigg P (1986) Biophysical studies of mechanoreceptors. J Appl Physiol 60:1107–1115

    PubMed  CAS  Google Scholar 

  • Gryglewski RJ, Dembinska-Kiec A, Zmuda A, Gryglewska T (1978) Prostacyclin and thromboxane Ai biosynthesis capacities of heart, arteries and platelets at various stages of experimental atherosclerosis in rabbits. Atherosclerosis 31:385–394

    Article  PubMed  CAS  Google Scholar 

  • Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol (Lond) 352:685–701

    CAS  Google Scholar 

  • Guo GB, Schmid PG, Abboud FM (1986) Sites at which vasopressin facilitates baroreflex inhibition of lumbar sympathetic nerve activity. Am J Physiol 251 (Heart Circ Physiol 20):H644–H655

    PubMed  CAS  Google Scholar 

  • Gustin MC, Zhou X-L, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765

    Article  PubMed  CAS  Google Scholar 

  • Hajduczok G, Chapleau MW, Abboud FM (1988) Rheoreceptors in the carotid sinus of dog. Proc Natl Acad Sci USA 85:7399–7403

    Article  PubMed  CAS  Google Scholar 

  • Hajduczok G, Ferlic RJ, Chapleau MW, Abboud FM (1990) Mechanism of mechanotransduction of arterial baroreceptors (Abstr). FASEB J 4(3):A285

    Google Scholar 

  • Hauss WH, Kreuziger H, Asteroth H (1949) Uber die Reizung der Pressorezeptoren im Sinus Caroticus beim Hund. Z Kreislaufforsch 38:28–33

    Google Scholar 

  • Heesch CM, Miller BM, Thames MD, Abboud FM (1983) Effects of calcium channel blockers on isolated carotid baroreceptors and baroreflex. Am J Physiol 245 (Heart Circ Physiol 14):H653–H661

    PubMed  CAS  Google Scholar 

  • Heesch CM, Abboud FM, Thames MD (1984a) Acute resetting of carotid sinus baroreceptors. II. Possible involvement of electrogenic Na+ pump. Am J Physiol 247 (Heart Circ Physiol 16):H833–H839

    PubMed  CAS  Google Scholar 

  • Heesch CM, Thames MD, Abboud FM (1984b) Acute resetting of carotid sinus baroreceptors. I. Dissociation between discharge and wall changes. Am J Physiol 247 (Heart Circ Physiol 16):H824–H832

    PubMed  CAS  Google Scholar 

  • Hille B, Woodhull AM, Shapiro BI (1975) Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond (Biol) 270:301–318

    Article  CAS  Google Scholar 

  • Hunt CC, Wilkinson RS, Fukami Y (1978) Ionic basis of the receptor potential in primary endings of mammalian muscle spindles. J Gen Physiol 71:683–698

    Article  PubMed  CAS  Google Scholar 

  • Husmark I, Ottoson D (1971a) Is the adaptation of the muscle spindle of ionic origin? Acta Physiol Scand 81:138–140

    Article  PubMed  CAS  Google Scholar 

  • Husmark I, Ottoson D (1971b) The contribution of mechanical factors to the early adaptation of the spindle response. J Physiol (Lond) 212:577–592

    CAS  Google Scholar 

  • Incalzi RA, Gemma A, Cocchi A, Carbonin P (1989) Baroreceptor reset with nitroprusside and drug-resistant hypertension. Lancet 8661 (Vol. II):504–505

    Article  Google Scholar 

  • Ito F, Komatsu Y, Kaneko N, Katsuta N (1981) Control of the variability of the afferent discharge rate in frog muscle spindle by potassium blockers. Brain Res 216:199–202

    Article  PubMed  CAS  Google Scholar 

  • Ito F, Komatsu Y, Fujitsuka N (1982) Gic(Ca)-dependent cyclic potential changes in the sensory nerve terminal of frog muscle spindle. Brain Res 252:39–50

    Article  PubMed  CAS  Google Scholar 

  • Ito F, Fujitsuka N, Fan XL (1985) Reversal of the static component of spindle potential by imposed depolarizing current in the frog muscle spindle. Brain Res 326:107–116

    Article  PubMed  CAS  Google Scholar 

  • Johnston CL, McGrath BP, Phillips P, Abrahams JM, Hodsman GP, Arnolda LF (1988) Vasopressin in congestive heart failure: clinical and experimental studies. In: Cowley AW Jr, Liard J-F, Ausiello DA (eds) Vasopressin: cellular and integrative functions. Raven, New York, pp 481–485

    Google Scholar 

  • Karwatowska-Prokopczuk E, Ciabattoni G, Wennmalm A (1989) Effects of hydrodynamic forces on coronary production of prostacyclin and purines. Am J Physiol 256 (Heart Circ Physiol 25):H1532–H1538

    PubMed  CAS  Google Scholar 

  • Katz B (1950) Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J Physiol (Lond) 111:261–282

    CAS  Google Scholar 

  • Kirchheim HR (1976) Systemic arterial baroreceptor reflexes. Physiol Rev 56:100–176

    PubMed  CAS  Google Scholar 

  • Koizumi K, Sato A (1969) Influence of sympathetic innervation on carotid sinus baroreceptor activity. Am J Physiol 216:321–329

    PubMed  CAS  Google Scholar 

  • Korner PI (1989) Baroreceptor resetting and other determinants of baroreflex properties in hypertension. Clin Exp Pharmacol Physiol (Suppl) 15:45–64

    Article  CAS  Google Scholar 

  • Krieger EM (1986) Neurogenic mechanisms in hypertension: resetting of the baroreceptors. State of the art lecture. Hypertension 8 (Suppl I):7–14

    Google Scholar 

  • Krieger EM (1987) Aortic diastolic caliber changes as a determinant for complete aortic baroreceptor resetting. Fed Proc 46:41–46

    PubMed  CAS  Google Scholar 

  • Krieger EM, Saigado HC, Michelini LC (1982) Resetting of the baroreceptors. In: Guyton AC, Hall JE (eds) International review of physiology, vol 26. Univ Park Press, Baltimore, Maryland, pp 119–146

    Google Scholar 

  • Kumada M, Schmidt RM, Sagawa K, Tan KS (1970) Carotid sinus reflex in response to hemorrhage. Am J Physiol 219:1373–1379

    PubMed  CAS  Google Scholar 

  • Kunze DL (1985) Role of baroreceptor resetting in cardiovascular regulation: acute resetting. Fed Proc 44:2408–2411

    PubMed  CAS  Google Scholar 

  • Kunze DL, Brown AM (1978) Sodium sensitivity of baroreceptors. Reflex effects on blood pressure and fluid volume in the cat. Circ Res 42:714–720

    Google Scholar 

  • Kunze DL, Krauhs JM, Orlea CJ (1984) Direct action of norepinephrine on aortic baroreceptors of rat adventitia. Am J Physiol 247 (Heart Circ Physiol 16):H811–H816

    PubMed  CAS  Google Scholar 

  • Kunze DL, Andresen MC, Torres LA (1986) Do calcium antagonists act directly on calcium channels to alter baroreceptor function? J Pharmacol Exp Ther 239:303–310

    PubMed  CAS  Google Scholar 

  • Landgren S (1952a) Baroceptor activity in the carotid sinus nerve and the distensibility of the sinus wall. Acta Physiol Scand 26:35–56

    Article  PubMed  CAS  Google Scholar 

  • Landgren S (1952b) On the excitation mechanism of the carotid baroceptors. Acta Physiol Scand 26:1–34

    Article  PubMed  CAS  Google Scholar 

  • Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature (Lond) 325:811–813

    Article  CAS  Google Scholar 

  • Loewenstein WR (1971) Mechano-electric transduction in the pacinian corpuscle. Initiation of sensory impulses in mechanoreceptors. In: Loewenstein WR (ed) Handbook of sensory physiology vol I. Principles of receptor physiology. Springer, Berlin Heidelberg New York, pp 269–290

    Chapter  Google Scholar 

  • McCubbin JW, Green JH, Page IH (1956) Baroceptor function in chronic renal hypertension. Circ Res 4:205–210

    PubMed  CAS  Google Scholar 

  • McDowell TS, Axtelle TS, Chapleau MW, Abboud FM (1989) Prostaglandins in carotid sinus enhance baroreflex in rabbits. Am J Physiol 257 (Regulatory Integrative Comp Physiol 26):R445–R450

    PubMed  CAS  Google Scholar 

  • Mendelowitz D, Scher AM (1988) Pulsatile sinus pressure changes evoke sustained baroreflex responses in awake dogs. Am J Physiol 255 (Heart Circ Physiol 24):H673–H678

    PubMed  CAS  Google Scholar 

  • Mendelowitz D, Scher AM (1990) Pulsatile pressure can prevent rapid baroreflex resetting. Am J Physiol 258 (Heart Circ Physiol 27):H92–H100

    PubMed  CAS  Google Scholar 

  • Mifflin SW, Kunze DL (1982) Rapid resetting of low pressure vagal receptors in the superior vena cava of the rat. Circ Res 51:241–249

    PubMed  CAS  Google Scholar 

  • Moncada S, Herman AG, Higgs EA, Vane JR (1977) Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the antithrombotic properties of vascular endothelium. Thrombosis Res 11:323–344

    Google Scholar 

  • Munch PA, Brown AM (1985) Role of vessel wall in acute resetting of aortic baroreceptors. Am J Physiol 248 (Heart Circ Physiol 17):H843–H852

    PubMed  CAS  Google Scholar 

  • Munch PA, Brown AM (1987) Sympathetic modulation of rabbit aortic baroreceptors in vitro. Am J Physiol 253 (Heart Circ Physiol 22):H1106–H1111

    PubMed  CAS  Google Scholar 

  • Munch PA, Andresen MC, Brown AM (1983) Rapid resetting of aortic baroreceptors in vitro. Am J Physiol 244 (Heart Circ Physiol 13):H672–H680

    PubMed  CAS  Google Scholar 

  • Munch PA, Thoren PN, Brown AM (1987) Dual effects of norepinephrine and mechanisms of baroreceptor stimulation. Circ Res 61:409–419

    PubMed  CAS  Google Scholar 

  • Nakajima S, Onodera K (1969a) Membrane properties of the stretch receptor neurons of crayfish with particular reference to mechanisms of sensory adaptation. J Physiol (Lond) 200:161–185

    CAS  Google Scholar 

  • Nakajima S, Onodera K (1969b) Adaptation of the generator potential in the crayfish stretch receptors under constant length and constant tension. J Physiol (Lond) 200:187–204

    CAS  Google Scholar 

  • Nakajima S, Takahashi K (1966) Post-tetanic hyperpolarization and electrogenic Na pump in stretch receptor neurone of crayfish. J Physiol (Lond) 187:105–127

    CAS  Google Scholar 

  • O’Leary DS, Scher AM, Bassett JE (1989) Effects of steps in cardiac output and arterial pressure in awake dogs with AV block. Am J Physiol 256 (Heart Circ Physiol 25):H361–H367

    PubMed  Google Scholar 

  • Ottoson D, Swerup C (1982) Studies on the role of calcium in adaptation of the crustacean stretch receptor. Effects of intracellular injection of calcium, EGTA and TEA. Brain Res 244:337–341

    Google Scholar 

  • Paintal AS (1973) Cardiovascular receptors. In: Neil E (ed) Handbook of sensory physiology vol III. Springer, Berlin Heidelberg New York, pp 1–45

    Google Scholar 

  • Pipili E, Poyser NL (1982) Release of prostaglandins I2 and E2 from the perfused mesenteric arterial bed of normotensive and hypertensive rats. Effects of sympathetic nerve stimulation and norepinephrine administration. Prostaglandins 23:543–549

    Google Scholar 

  • Quest JA, Gillis RA (1974) Effect of digitalis on carotid sinus baroreceptor activity. Circ Res 35:247–255

    CAS  Google Scholar 

  • Reis DJ, Fuxe K (1968) Adrenergic innervation of the carotid sinus. Am J Physiol 215:1054–1057

    PubMed  CAS  Google Scholar 

  • Richter DW, Keck W, Seller H (1970) The course of inhibition of sympathetic activity during various patterns of carotid sinus nerve stimulation. Pflügers Arch Eur J Physiol 317:110–123

    Article  CAS  Google Scholar 

  • Rogawski MA (1985) The A-current: how ubiquitous a feature of excitable cells is it? Trends Neurosci 8:214–219

    Article  Google Scholar 

  • Rudy B (1988) Diversity and ubiquity of K channels. Neuroscience 25:729–749

    Article  PubMed  CAS  Google Scholar 

  • Rush DS, Kerstein MD, Bellan JA, Knoop SM, Mayeux PR, Hyman AL, Kadowitz PJ, McNamara DB (1988) Prostacyclin, thromboxane A2, and prostaglandin E2 formation in atherosclerotic human carotid artery. Arteriosclerosis 8:73–78

    Article  PubMed  CAS  Google Scholar 

  • Sachs F (1987) Baroreceptor mechanisms at the cellular level. Fed Proc 46:12–16

    PubMed  CAS  Google Scholar 

  • Sagawa K (1983) Baroreflex control of systemic arterial pressure and vascular bed. In: Shepherd JT, Abboud FM (eds) Handbook of physiology Sect 2 The cardiovascular system, vol III Peripheral circulation and organ blood flow Pt. 2. Am Physiol Soc, Bethesda, MD, pp 453–496

    Google Scholar 

  • Saum WR, Brown AM, Tuley FH (1976) An electrogenic sodium pump and baroreceptor function in normotensive and spontaneously hypertensive rats. Circ Res 39:497–505

    Google Scholar 

  • Saum WR, Ayachi S, Brown AM (1977) Actions of sodium and potassium ions on baroreceptors of normotensive and spontaneously hypertensive rats. Circ Res 41:768–774

    PubMed  CAS  Google Scholar 

  • Schmid PG, Guo GB, Abboud FM (1985) Different effects of vasopressin and angiotensin II on baroreflexes. Fed Proc 44:2388–2392

    PubMed  CAS  Google Scholar 

  • Seagard JL, Hopp FA, Kampine JP (1987) Effect of sympathetic sensitization of baroreceptors on renal nerve activity. Am J Physiol 252 (Regulatory Integrative Comp Physiol 21):R328–R335

    PubMed  CAS  Google Scholar 

  • Seagard JL, van Brederode JFM, Dean C, Hopp FA, Gallenberg LA, Kampine JP (1990) Firing characteristics of single-fiber carotid sinus baroreceptors. Circ Res 66:1499–1509

    PubMed  CAS  Google Scholar 

  • Share L (1988) Role of vasopressin in cardiovascular regulation. Physiol Rev 68:1248–1284

    PubMed  CAS  Google Scholar 

  • Sokolove PG, Cooke IM (1971) Inhibition of impulse activity in a sensory neuron by an electrogenic pump. J Gen Physiol 57:125–163

    Article  PubMed  CAS  Google Scholar 

  • Spyer KM (1981) Neural organization and control of the baroreceptor reflex. In: Baker PF, Grunike H, Habermann E et al. Reviews of Physiology Biochemistry and Pharmacology, vol 88. Springer, Berlin Heidelberg New York Tokyo, pp 23–124

    Google Scholar 

  • Staszewska-Barczak J (1983) Prostanoids and cardiac reflexes of sympathetic and vagal origin. Am J Cardiol 52:36A–45A

    Article  PubMed  CAS  Google Scholar 

  • Thoren P, Andresen MC, Brown AM (1982) Effects of changes in extracellular ionic concentrations on aortic baroreceptors with nonmyelinated afferent fibers. Circ Res 50:413–418

    PubMed  CAS  Google Scholar 

  • Tomomatsu E, Nishi K (1981) Increased activity of carotid sinus baroreceptors by sympathetic stimulation and norepinephrine. Am J Physiol 240 (Heart Circ Physiol 9):H650–H658

    PubMed  CAS  Google Scholar 

  • Undesser KP, Hasser EM, Haywood JR, Johnson AK, Bishop VS (1985) Interactions of vasopressin with the area postrema in arterial baroreflex function in conscious rabbits. Circ Res 56:410–417

    PubMed  CAS  Google Scholar 

  • van Brederode JFM, Seagard JL, Dean C, Hopp FA, Kampine JP (1990) An experimental and modeling study of the excitability of carotid sinus baroreceptors. Circ Res 66:1510–1525

    PubMed  Google Scholar 

  • Vanhoutte PM (1989) Endothelium and control of vascular function. State of the art lecture. Hypertension 13:658–667

    PubMed  CAS  Google Scholar 

  • Wang W, Chen J-S, Zucker IH (1990) Carotid sinus baroreceptor sensitivity in experimental heart failure. Circulation 81:1959–1966

    Article  PubMed  CAS  Google Scholar 

  • Xie P, McDowell TS, Hajduczok G, Chapleau MW, Abboud FM (1988a) Contribution of cyclooxygenase metabolites to baroreceptor activation in hypercholesterolemic (HC) rabbits. Circulation (Abstr) 78:11–177

    Google Scholar 

  • Xie P, Chapleau MW, McDowell TS, Hajduczok G, Abboud FM (1988b) Chronic resetting of baroreceptors differs in hypercholesterolemic vs renal hypertensive rabbits. Physiologist (Abstr) 31.-A198

    Google Scholar 

  • Xie P, Chapleau MW, McDowell TS, Hajduczok G, Abboud FM (1990) Mechanism of decreased baroreceptor activity in chronic hypertensive rabbits — role of endogenous prostanoids. J Clin Invest 86:625–630

    Article  PubMed  CAS  Google Scholar 

  • Xie P, McDowell TS, Chapleau MW, Hajduczok G, Abboud FM (1991) Rapid baroreceptor resetting in chronic hypertension. Implications for normalization of arterial pressure. Hypertension 17:72–79

    Google Scholar 

  • Yamazaki T, Brunner MJ, Sagawa K (1988) Pulsatile vs mean component of baroreflex compensation for posthemorrhage hypotension. Am J Physiol 254 (Heart Circ Physiol 23):H1074–H1080

    PubMed  CAS  Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature (Lond) 332:411–415

    Article  CAS  Google Scholar 

  • Yang M, Andresen MC (1990) Peptidergic modulation of mechanotransduction in rat arterial baroreceptors. Circ Res 66:804–813

    PubMed  CAS  Google Scholar 

  • Yang X-C, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chapleau, M.W. (1992). Cardiovascular Mechanoreceptors. In: Ito, F. (eds) Comparative Aspects of Mechanoreceptor Systems. Advances in Comparative and Environmental Physiology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76690-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76690-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76692-3

  • Online ISBN: 978-3-642-76690-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics