Mechanoreceptors in Respiratory Systems

  • J. G. Widdicombe
  • G. Sant’Ambrogio
Part of the Advances in Comparative and Environmental Physiology book series (COMPARATIVE, volume 10)


The respiratory system can be divided into the respiratory tract and lungs, and the extrinsic respiratory muscles which are responsible for ventilating the lungs. The main extrinsic respiratory muscles are the diaphragm, intercostals and abdominal muscles, largely responsible for inspiratory and expiratory efforts. Many other muscles have an accessory respiratory function, including those in the neck and the perineum. In general, mechanoreception in the extrinsic respiratory muscles is similar to that in other skeletal muscles, the main differences being quantitative rather than qualitative, especially for the diaphragm.


Airway Smooth Muscle Muscle Spindle Superior Laryngeal Nerve Pacinian Corpuscle Golgi Tendon Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian ED (1933) Afferent impulses in the vagus and their effect on respiration. J Physiol 79:332–358PubMedGoogle Scholar
  2. Anderson JW, Sant’Ambrogio FB, Mathew OP, Sant’Ambrogio G (1990a) Water-responsive laryngeal receptors in the dog are not specialized endings. Respir Physiol 79:33–44PubMedCrossRefGoogle Scholar
  3. Anderson JW, Sant’Ambrogio FB, Orani GP, Sant’Ambrogio G, Mathew OP (1990b) Carbon dioxide-responsive laryngeal receptors in the dog. Respir Physiol 82:217–226PubMedCrossRefGoogle Scholar
  4. Boggs CF, Bartlett D (1982) Chemical specificity of a laryngeal apneic reflex in puppies. J Appl Physiol 53:455–462PubMedGoogle Scholar
  5. Boushey HA, Richardson PS (1973) The reflex effects of intralaryngeal carbon dioxide on the pattern of breathing. J Physiol 228:181–191PubMedGoogle Scholar
  6. Boushey HA, Richardson PS, Widdicombe JG, Wise JCM (1974) The response of laryngeal afferent fibres to mechanical and chemical stimuli. J Physiol 240:153–175PubMedGoogle Scholar
  7. But VI, Klimova-Cherkasova VI (1967) Afferent fibres from the upper respiratory tract in branches of the trigeminal nerve. Bull Exp Biol Med 64:1275–1277CrossRefGoogle Scholar
  8. Cauna N (1982) Blood and nerve supply of the nasal lining. In: Proctor DF, Andersen IB (eds) The nose: upper airway physiology and the atmospheric environment. Elsevier Biomedical, Amsterdam, pp 45–69Google Scholar
  9. Coleridge HM, Coleridge JCG (1986) Reflexes evoked from the tracheobronchial tree and lungs. In: Cherniack NS, Widdicombe JG (eds) Handbook of physiology, 3. The respiratory system, vol II. Control of breathing. American Physiological Society, Bethesda, pp 395–429Google Scholar
  10. Coleridge JCG, Coleridge HM (1984) Afferent vagal C-fiber innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 99:1–110PubMedCrossRefGoogle Scholar
  11. Corda M, Eklund G, von Euler C (1965) External intercostal and phrenic alpha motor responses to changes in respiratory load. Acta Physiol Scand 63:391–400PubMedCrossRefGoogle Scholar
  12. Critchlow V, von Euler C (1963) Intercostal muscle spindle activity and its gamma motor control. J Physiol 168:820–847PubMedGoogle Scholar
  13. Daly M deB (1986) Interactions between respiration and circulation. In: Cherniack NS, Widdicombe JG (eds) Handbook of physiology, 3. The respiratory system, vol II. Control of breathing. American Physiological Society, Bethesda, pp 529–594Google Scholar
  14. Das RM, Jeffery PK, Widdicombe JG (1978) The epithelial innervation of the lower respiratory tract of the cat. J Anat 126:123–131PubMedGoogle Scholar
  15. Das RM, Jeffery PK, Widdicombe JG (1979) Experimental degeneration of intraepithelial nerve fibres in cat airways. J Anat 128:259–263PubMedGoogle Scholar
  16. Davies A, Roumy M (1982) The effect of transient stimulation of lung irritant receptors on the pattern of breathing in rabbits. J Physiol 324:389–401PubMedGoogle Scholar
  17. Davies A, Dixon M, Callanan D, Huszczuk A, Widdicombe JG, Wise JCM (1978) Lung reflexes in rabbits during pulmonary stretch receptor block by sulphur dioxide. Respir Physiol 34:83–101PubMedCrossRefGoogle Scholar
  18. Dawson WW (1962) Chemical stimulation of peripheral trigeminal nerve. Nature (Lond) 196:341–345CrossRefGoogle Scholar
  19. Duron B (1981) Intercostal and diaphragmatic muscle endings and afferents. In: Hornbein TF (ed) Regulation of breathing. Dekker, New York, pp 473–540Google Scholar
  20. Euler von C (1986) Brain stem mechanisms for generation and control of breathing pattern. In: Cherniack NS, Widdicombe JG (eds) Handbook of physiology, 3. The respiratory system, vol II. Control of breathing. American Physiological Society, Bethesda, pp 1–67Google Scholar
  21. Fox B, Bull TB, Guz A (1980) Innervation of alveolar walls in the human lung: an electron microscopic study. J Anat 131:683–692PubMedGoogle Scholar
  22. Glebovsky VD, Bayev AV (1984) Stimulation of nasal cavity mucosa trigeminal receptors with respiratory airflows. Sechenov Physiol J USSR 70:1534–1541Google Scholar
  23. Godwin-Austen RB (1969) The mechanoreceptors of the costo-vertebral joints. J Physiol 202:737–753PubMedGoogle Scholar
  24. Harding R, Johnson P, McClelland MA (1978) Liquid-sensitive laryngeal receptors in the developing sheep, cat and monkey. J Physiol 277:409–422PubMedGoogle Scholar
  25. Hering E, Breuer J (1868) Die Selbststeuerung der Athmung durch den Nervus vagus. Sitzungsber Akad Wiss Wien 57:672–677Google Scholar
  26. Hwang JC, St. John WM, Bartlett D (1984) Afferent pathways for hypoglossal and phrenic responses to changes in upper airway pressure. Respir Physiol 55:341–354CrossRefGoogle Scholar
  27. Kappagoda CT, Man GCW, Teo KK (1987) Behaviour of canine pulmonary vagal afferent receptors during sustained acute pulmonary venous pressure elevation. J Physiol 394:249–265PubMedGoogle Scholar
  28. Keller CJ, Loeser A (1929) Der zentripetale Lungenvagus. Z Biol 89:373–395Google Scholar
  29. Knowlton GC, Larrabee MG (1946) A unitary analysis of pulmonary volume receptors. Am J Physiol 147:100–114PubMedGoogle Scholar
  30. Krauhs JM (1984) Morphology of presumptive slowly adapting receptors in dog trachea. Anat Res 210:73–85CrossRefGoogle Scholar
  31. Laitinen L (1986) Detailed analysis of the neural elements in human airways. In: Kaliner M, Barnes PJ (eds) Neural regulation of the airways in health and disease. Dekker, New York, pp 35–56Google Scholar
  32. Larrabee MG, Knowlton GC (1946) Excitation and inhibition of phrenic motoneurones by inflation of the lungs. Am J Physiol 147:90–99PubMedGoogle Scholar
  33. Lauweryns JM, Goddeeris P (1975) Neuroepithelial bodies in the human child and adult lungs. Am Rev Respir Dis 111:469–476PubMedGoogle Scholar
  34. Lundberg JM (1990) Peptide and classical transmitter mechanisms in the autonomic nervous system. Arch Int Pharmacodyn 303:9–19PubMedGoogle Scholar
  35. Lung MA, Widdicombe JG (1987) Lung reflexes and nasal vascular resistance in the anaesthetized dog. J Physiol 386:465–474PubMedGoogle Scholar
  36. Mathew OP, Abu-Osba YK, Thach BT (1982) Genioglossus muscle responses to upper airway pressure changes: afferent pathways. J Appl Physiol 52:445–450PubMedGoogle Scholar
  37. McDonald DM (1990) The ultrastructure and permeability of tracheobronchial blood vessels in health and disease. Eur Respir J 3 (Suppl 12):572S–585SGoogle Scholar
  38. Meyrick B, Reid L (1971) Nerves in the rat intra-acinar alveoli: an electron microscopic study. Respir Physiol 11:367–377PubMedCrossRefGoogle Scholar
  39. Miller AJ, Dunmire CR (1976) Characterization of the postnatal development of superior laryn-geal nerve fibres in the postnatal kitten. J Neurobiol 7:483–494PubMedCrossRefGoogle Scholar
  40. Miller AJ, Loizzi RF (1974) Anatomical and functional differentiation of superior laryngeal nerve fibres affecting swallowing and respiration. Exp Neurol 42:369–387PubMedCrossRefGoogle Scholar
  41. Mills JE, Sellick H, Widdicombe JG (1969) Activity of lung irritant receptors in pulmonary microembolism, anaphylaxis and drug-induced bronchoconstriction. J Physiol 203:337–357PubMedGoogle Scholar
  42. Mills JE, Sellick H, Widdicombe JG (1970) Epithelial irritant receptors in the lungs. In: Porter R (ed) Breathing: Hering-Breuer centenary symposium. Churchill, London, pp 77–92CrossRefGoogle Scholar
  43. Nail BS, Sterling GM, Widdicombe JG (1969) Epipharyngeal receptors responding to mechanical stimulation. J Physiol 204:91–98PubMedGoogle Scholar
  44. Pack RJ, Widdicombe JG (1984) Amine-containing cells of the lung. Eur J Respir Dis 65:559–578PubMedGoogle Scholar
  45. Pack RJ, Al-Ugaily LH, Widdicombe JG (1984) The innervation of the trachea and extrapulmonary bronchi of the mouse. Cell Tissue Res 238:61–68PubMedCrossRefGoogle Scholar
  46. Paintal AS (1955) Impulses in vagal afferent fibres from specific pulmonary deflation receptors. The response of these receptors to phenyl diguanide, potato starch, 5-hydroxytryptamine and nicotine, and their role in respiratory and cardiovascular reflexes. Q J Exp Physiol 40:89–111Google Scholar
  47. Paintal AS (1969) Mechanism of stimulation of type J pulmonary receptors. J Physiol 203:511–532PubMedGoogle Scholar
  48. Paintal AS (1983) Lung and airway receptors. In: Pallot DJ (ed) Control of respiration. Croom Helm, London, pp 78–107Google Scholar
  49. Paintal AS (1986) The visceral sensations — some basic mechanisms. In: Cervero F, Morrisson JFB (eds) Visceral sensation. Elsevier, Amsterdam, pp 3–19CrossRefGoogle Scholar
  50. Robinson NP, Venning L, Kyle H, Widdicombe JG (1986) Quantitation of the secretory cells of the ferret tracheobronchial tree. J Anat 145:173–188PubMedGoogle Scholar
  51. Sahin G, Webber SE, Widdicombe JG (1987) Lung and cardiac reflex actions on the tracheal vasculature in anaesthetized dogs. J Physiol 387:47–57PubMedGoogle Scholar
  52. Sant’Ambrogio FB, Mathew OP, Clark WD, Sant’Ambrogio G (1985) Laryngeal influences on breathing pattern and posterior cricoarytenoid muscle activity. J Appl Physiol 58:1298–1304PubMedGoogle Scholar
  53. Sant’Ambrogio FB, Sant’Ambrogio G, Mathew OP (1986) Effects of airway cooling on tracheal stretch receptors. Respir Physiol 66:205–214PubMedCrossRefGoogle Scholar
  54. Sant’Ambrogio G (1982) Information arising from the tracheobronchial tree of mammals. Physiol Rev 62:531–569PubMedGoogle Scholar
  55. Sant’Ambrogio G, Remmers JE, De Groot WA, Callas G, Mortola JP (1978) Localization of rapidly adapting receptors in the trachea and main stem bronchus of the dog. Respir Physiol 33:359–366PubMedCrossRefGoogle Scholar
  56. Sant’Ambrogio G, Mathew OP, Fisher JT, Sant’Ambrogio FB (1983) Laryngeal receptors responding to transmural pressure, airflow and local muscle activity. Respir Physiol 54:317–330PubMedCrossRefGoogle Scholar
  57. Sant’Ambrogio G, Mathew OP, Sant’Ambrogio FB (1985a) Laryngeal cold receptors. Respir Physiol 59:35–44PubMedCrossRefGoogle Scholar
  58. Sant’Ambrogio G, Mathew OP, Sant’Ambrogio FB (1985b) Role of intrinsic muscle and tracheal motion in modulating laryngeal receptors. Respir Physiol 61:289–300PubMedCrossRefGoogle Scholar
  59. Sant’Ambrogio G, Brambilla-Sant’Ambrogio F, Mathew OP (1986) Effect of cold air on laryngeal mechanoreceptors in the dog. Respir Physiol 64:45–56PubMedCrossRefGoogle Scholar
  60. Sasaki CT (1979) Development of laryngeal function: etiologic significance in the sudden infant death syndrome. Laryngoscope 89:1964–1982PubMedGoogle Scholar
  61. Sasaki CT, Suzuki M, Horiuchi M, Kirchner JA (1977) The effect of tracheostomy on the laryngeal closure reflex. Laryngoscope 87:1428–1433PubMedCrossRefGoogle Scholar
  62. Sears TA (1963) Activity of fusimotor fibres innervating muscle spindles in the intercostal muscles of the cat. Nature (Lond) 197:1013–1014CrossRefGoogle Scholar
  63. Shimosegawa T, Said SI (1991) Pulmonary calcitonin gene-related peptide immunoreactivity: nerve-endocrine cell interrelationships. Am J Respir Cell Mol Biol 4:126–134PubMedGoogle Scholar
  64. Storey AT, Johnson P (1975) Laryngeal water receptors initiating apnea in the lamb. Exp Neurol 47:42–55PubMedCrossRefGoogle Scholar
  65. Tatar M, Webber SE, Widdicombe JG (1988) Lung C-fibre receptor activation and defensive reflexes in anaesthetized cats. J Physiol 402:411–420PubMedGoogle Scholar
  66. Tsubone H (1989) Nasal ‘flow’ receptors of the rat. Respir Physiol 75:51–64PubMedCrossRefGoogle Scholar
  67. Tsubone H (1990) Nasal ‘pressure’ receptors. Jpn J Vet Sci 52:225–232CrossRefGoogle Scholar
  68. Uddman R, Sundler F (1986) Innervation of the upper airways. In: Widdicombe JH (ed) Clinics in chest medicine, vol 7. The upper airways. WB Saunders, Philadelphia, pp 201–209Google Scholar
  69. Ulrich CE, Haddock MP, Alarie Y (1972) Airborne chemical irritants, role of the trigeminal nerve. Arch Environ Health 24:37–42PubMedGoogle Scholar
  70. Widdicombe JG (1954) Receptors in the trachea and bronchi of the cat. J Physiol 123:71–104PubMedGoogle Scholar
  71. Widdicombe JG (1961) Respiratory reflexes in man and other mammalian species. Clin Sci 21:163–170PubMedGoogle Scholar
  72. Widdicombe JG (1986) Sensory innervation of the lungs and airways. In: Cervero F, Morrisson JFB (eds) Progress in brain research, vol. 67. Visceral sensation. Elsevier, Amsterdam, pp 49–64CrossRefGoogle Scholar
  73. Widdicombe JG, Sant’Ambrogio G, Mathew OP (1988) Nervous receptors of the upper airway. In: Mathew OP, Sant’Ambrogio G (eds) Respiratory function of the upper airway. Dekker, New York, pp 193–231Google Scholar
  74. Wyke BD, Kirchner JA (1976) Neurology of the larynx. In: Hinchcliffe R, Harrison D (eds) Scientific foundations of otolaryngology. Year Book Medical Publishers, Chicago, pp 546–574Google Scholar
  75. Zotterman Y (1936) Specific action potentials in the lingual nerve of cat. Skand Arch Physiol 75:105–119Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. G. Widdicombe
    • 1
  • G. Sant’Ambrogio
    • 2
  1. 1.Department of PhysiologySt George’s Hospital Medical SchoolLondonUK
  2. 2.Department of Physiology and BiophysicsUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations