Mechanosensory Transduction in Ciliates (Protozoa)

  • J. W. Deitmer
Part of the Advances in Comparative and Environmental Physiology book series (COMPARATIVE, volume 10)

Abstract

Most living cells are mechanosensitive in that mechanical strain exerted on their plasma membrane results in a transient change in electrical conductance of the membrane. In cells unspecialized for mechanoreception, a mechanically induced “injury” would result in a membrane potential change due to traumatic leak currents. In specialized mechanoreceptor tissue, however, the mechanical energy input results in the opening and/or closing of specific sensory ion channels in the membrane; this may provide a very high sensitivity to a mechanical stimulus. The gating of these mechanosensitive channels results in a defined change in ion conductance, and consequently, in a shift of the membrane potential. The steps of mechanoelectrical coupling are summarized by the following scheme: mechanical energy input — deformation of the sensitive structure — gating of mechanosensory ion channels — change in membrane ion conductance — receptor current flow — receptor potential — voltage-sensitive modification and integration — motor output.

Keywords

Permeability Cobalt Cadmium Manganese Ethylene Glycol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akoev GN (1982) The effect of Mg and Ca on the excitability of Pacinian corpuscles. Brain Res 239:39–49CrossRefGoogle Scholar
  2. Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202:1203–1206PubMedCrossRefGoogle Scholar
  3. Carbone E, Lux HD (1984) A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J 46:413–418PubMedCrossRefGoogle Scholar
  4. Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature (Lond) 281:675–677CrossRefGoogle Scholar
  5. Deitmer JW (1981) Voltage and time characteristics of the potassium mechanoreceptor current in the ciliate Stylonychia. J Comp Physiol 141:173–182CrossRefGoogle Scholar
  6. Deitmer JW (1982) The effects of tetraethylammonium and other agents on the potassium mechanoreceptor current in the ciliate Stylonychia. J Exp Biol 96:239–249PubMedGoogle Scholar
  7. Deitmer JW (1983) Ca channels in the membrane of the hypotrich ciliate Stylonychia. In: Grinnell A, Moody WJ (eds) The physiology of excitable cells. Liss, New York, pp 51–63Google Scholar
  8. Deitmer JW (1984) Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Stylonychia. J Physiol 355:137–159PubMedGoogle Scholar
  9. Deitmer JW (1986) Voltage dependence of two inward currents carried by calcium and barium in the ciliate Stylonychia mytilus. J Physiol 380:551–574PubMedGoogle Scholar
  10. Deitmer JW (1987) Loss of electrical excitability during encystment of the hypotrichous ciliate Stylonychia mytilus. Naturwissenschaften 74:140–142CrossRefGoogle Scholar
  11. Deitmer JW (1988) Multiple types of calcium channels: Is their function related to their localization? In: Grinnell AD, Armstrong D, Jackson MB (eds) Calcium and ion channel modulation. Plenum Press, New York, pp 19–32Google Scholar
  12. Deitmer JW, Eckert R (1985) Two components of Ca-dependent potassium current in identified neurones ofAplysia californica. Pflügers Arch 403:353–359CrossRefGoogle Scholar
  13. Deitmer JW, Machemer H (1982) Osmotic tolerance of Ca-dependent excitability in the marine ciliate Paramecium calkinsi. J Exp Biol 97:311–324Google Scholar
  14. Deitmer JW, Machemer H, Martinac B (1984) Motor control of three types of ciliary organelles in the ciliate Stylonychia. J Comp Physiol A 154:113–120CrossRefGoogle Scholar
  15. Deitmer JW, Ivens I, Pernberg J (1986) Changes in voltage-dependent calcium currents during the cell cycle of the ciliateStylonychia. Exp Cell Res 162:549–554PubMedCrossRefGoogle Scholar
  16. De Peyer JE, Deitmer JW (1980) Divalent cations as charge carriers during two functionally different membrane currents in the ciliate Stylonychia. J Exp Biol 88:73–89PubMedGoogle Scholar
  17. De Peyer JE, Machemer H (1977) Membrane excitability in Stylonychia : properties of the two-peak regenerative Ca-response. J Comp Physiol 121:15–32CrossRefGoogle Scholar
  18. De Peyer JE, Machemer H (1978a) Hyperpolarizing and depolarizing mechanoreceptor potentials in Stylonychia. J Comp Physiol 127:255–266CrossRefGoogle Scholar
  19. De Peyer JE, Machemer H (1978b) Are receptor-activated ciliary motor responses mediated through voltage or current? Nature (Lond) 276:285–287CrossRefGoogle Scholar
  20. De Peyer JE, Machemer H (1982a) Electromechanical coupling of cilia. I. Effects of depolarizing voltage steps. Cell Motil 2:483–496CrossRefGoogle Scholar
  21. De Peyer JE, Machemer H (1982b) Electromechanical coupling of cilia. II. Effects of hyperpolarizing voltage steps. Cell Motil 2:497–508CrossRefGoogle Scholar
  22. Doroszewski M (1970) Responses of the ciliate Dileptus to mechanical stimuli. Acta Protozool 7:353–362Google Scholar
  23. Dunlap K (1977) Localization of calcium channels in Paramecium caudatum. J Physiol 171:119Google Scholar
  24. Eckert R, Chad JE (1984) Inactivation of Ca channels. Prog Biophys Mol Biol 44:215–267PubMedCrossRefGoogle Scholar
  25. Edwards C, Ottoson D, Rydqvist B, Swerup B (1981) The permeability of the transducer membrane of the crayfish stretch receptor to calcium and to other divalent cations. Neuroscience 6:1455–1460PubMedCrossRefGoogle Scholar
  26. Epstein M, Eckert R (1973) Membrane control of ciliary activity in the protozoanEuplotes. J Exp Biol 58:437–462Google Scholar
  27. Fenchel T (1980) Suspension feeding in ciliate protozoa: functional response and particle size selection. Microbiol Ecol 6:1–11CrossRefGoogle Scholar
  28. Gage PW (1976) Generation of end-plate potentials. Physiol Rev 56:177–247PubMedGoogle Scholar
  29. Gustin MC, Bonini MN, Nelson DL (1983) Membrane potential regulation of cAMP: control mechanism for the swimming behavior inParamecium. Soc Neurosci Abstr 9:167Google Scholar
  30. Hara R, Asai H (1980) Electrophysiological responses of Didinium nasutum to Paramecium capture and mechanical stimulation. Nature (Lond) 283:869–870CrossRefGoogle Scholar
  31. Hara R, Naitoh Y (1980) Electrophysiological responses of Didinium nasutum to mechanical and electrical stimulation. Zool Mag Tokyo 89:450Google Scholar
  32. Hennessey TM, Machemer H, Nelson DL (1985) Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization. Eur J Cell Biol 36:153–156PubMedGoogle Scholar
  33. Hille B (1978) Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophys J 22:283–294PubMedCrossRefGoogle Scholar
  34. Ivens I, Deitmer JW (1986) Inhibition of a voltage-dependent Ca current by concanavalin A. Pflügers Arch 406:212–217PubMedCrossRefGoogle Scholar
  35. Jennings HS (1906) Behavior of the lower organisms. Columbia Univ Press, New YorkCrossRefGoogle Scholar
  36. Kamada T (1934) Some observations on potential differences across the ectoplasm membrane of Paramecium. J Exp Biol 11:94–102Google Scholar
  37. Karpenko AA, Railkin AI, Seravin LN (1977) Feeding behaviour of unicellular animals. II. The role of prey mobility in the feeding behaviour of protozoa. Acta Protozool 16:333–344Google Scholar
  38. Kung C (1979) Biology and genetic of Paramecium behaviour. In: Brakefield XO (ed) Topics in neurogenetics. Elsevier, New York, pp 1–26Google Scholar
  39. Kung C, Saimi Y (1985) Ca2+ channels of Paramecium : a multidisciplinary study. Membr Transport 23:45–66Google Scholar
  40. Llinas R, Yarom Y (1981) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 315:549–567PubMedGoogle Scholar
  41. Machemer H (1974) Frequency and directional responses of cilia to membrane potential changes inParamecium. J Comp Physiol 92:293–316CrossRefGoogle Scholar
  42. Machemer H (1977) Motor activity and bioelectric control of cilia. Fortschr Zool 24:195–210PubMedGoogle Scholar
  43. Machemer H (1986) Electromotor coupling in cilia. In: Luttgau HCh (ed) Membrane control of cellular activity. Progr Zool 33, Fischer, Stuttgart, pp 205–250Google Scholar
  44. Machemer H, Deitmer JW (1985) Mechanoreception in ciliates. In: Ottoson D (ed) Progress in sensory physiology, vol 5. Springer, Berlin Heidelberg New York Tokyo, pp 81–118CrossRefGoogle Scholar
  45. Machemer H, Deitmer JW (1987) From structure to behaviour: Sty ¡onychia as a model system for cellular physiology. In: Corliss JD, Patterson DJ (eds) Progress in protistology, vol 2. Biopress, Bristol, pp 213–330Google Scholar
  46. Machemer H, De Peyer JE (1977) Swimming sensory cells: electrical membrane parameters, receptor properties and motor control in ciliated Protozoa. Verh Dtsch Zool Ges Erlangen 1977:86–110Google Scholar
  47. Machemer H, Ogura A (1979) Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol 296:49PubMedGoogle Scholar
  48. Machemer-Rohnisch S, Machemer H (1984) Receptor current following controlled stimulation of immobile tail cilia inParamecium caudatum. J Comp Physiol A 154:263–271CrossRefGoogle Scholar
  49. McClesky EM, Fox AP, Feldman D, Tsien RW (1986) Different types of calcium channels. J Exp Biol 124:177Google Scholar
  50. Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng 7:1–18PubMedCrossRefGoogle Scholar
  51. Naitoh Y (1984) Mechanosensory transduction in protozoa. In: Colombetti G, Lenci F (eds) Membranes and sensory transduction. Plenum Press, New York, pp 113–135CrossRefGoogle Scholar
  52. Naitoh Y, Eckert R (1968) Electrical properties of Paramecium: modification by bound and free cations. Z Vergl Physiol 61:427–452CrossRefGoogle Scholar
  53. Naitoh Y, Eckert R (1969a) Ionic mechanisms controlling behavioral responses in Paramecium to mechanical stimulation. Science 164:963–965PubMedCrossRefGoogle Scholar
  54. Naitoh Y, Eckert R (1969b) Ciliary orientation: controlled by cell membrane or by intracellular fibrils? Science 166:1633–1635PubMedCrossRefGoogle Scholar
  55. Naitoh Y, Eckert R (1973) Sensory mechanisms in Paramecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential. J Exp Biol 54:53–65Google Scholar
  56. Nakaoka Y, Machemer H (1990) Effects of cyclic nucleotides and intracellular Ca on voltage-activated ciliary beating inParamecium. J Comp Physiol A 166:401–406CrossRefGoogle Scholar
  57. Ogura A, Machemer H (1980) Distribution of mechanoreceptor channels in the Paramecium surface membrane. J Comp Physiol 135:233–242CrossRefGoogle Scholar
  58. Ogura A, Takahashi K (1976) Artificial decilication causes loss of calcium-dependent responses in Paramecium. Nature (Lond) 264:170CrossRefGoogle Scholar
  59. Onimaru H, Naitoh Y, Ohki K, Nozawa Y (1979) Electrophysiological studies on the membrane of Tetrahymena. Dobutsugaku Zasshi (Zool Mag Tokyo) 88:529Google Scholar
  60. Pape C, Machemer H (1986) Electrical properties and membrane currents in the ciliate Didinium. J Comp Physiol A 158:11–124CrossRefGoogle Scholar
  61. Satow Y, Murphy AD, Kung C (1983) The ionic basis of the depolarizing mechanoreceptor potential of Paramecium tetraurelia. J Exp Biol 103:253–264Google Scholar
  62. Swerup C, Rydqvist B, Ottoson D (1983) Time characteristics and potential dependence of early and late adaptation in the crustacean stretch receptor. Acta Physiol Scand 119:91–99PubMedCrossRefGoogle Scholar
  63. Wood DC (1982) Membrane permeabilities determining resting, action and mechanoreceptor potentials inStentor coeruleus. J Comp Physiol 146:537–550CrossRefGoogle Scholar
  64. Wood DC (1985) The mechanism of tubocurarine action on mechanoreceptor channels in the protozoanStentor coeruleus. J Exp Biol 117:215–235PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. W. Deitmer
    • 1
  1. 1.Abteilung für Allgemeine Zoologie, FB BiologieUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations