Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 10))

Abstract

Mechanosensitive ion channels are a class of ion channels which transduce mechanical forces of the cell membrane into an electrical response. These channels are gated by the mechanical force produced by stretching the lipid bilayer and/or the underlying cytoskeleton of cell membranes. They were initially reported by Guharay and Sachs (1984) in chick skeletal muscle and nearly simultaneously by Brehm et al. in embryonic Xenopus muscle (Brehm et al. 1984). They are now found in a variety of animal and plant tissues (Ohmori 1984; Brezden et al. 1986; Cooper et al. 1986; Sigurdson et al. 1987; Falke et al. 1988), as well as in fungi (Gustin et al. 1988) and bacteria (Martinac et al. 1987; Zoratti and Petronilli 1988; Berner et al. 1989). The mechanosensitive channels appear ubiquitous. The only class of animal cells which seem to lack them are undifferentiated cancer cell lines (Sachs 1988). Mechanosensitive ion channels have been suggested to play important physiological roles (touch, hearing, proprioception) in many systems (Sachs 1988). Regulation of cell volume, osmolality, and growth are also among the processes which are likely to be controlled by these channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayer ME (1979) The fusion sites between outer membrane and cytoplasmic membrane of bacteria: their role in membrane assembly and virus infection. In: Inouye M (ed) Bacterial outer membranes: biogenesis and function. Wiley, New York, pp 167–202

    Google Scholar 

  • Berger LR, Weiser RS (1957) The ß-glucosaminidase activity of egg-white lysozyme. Biochim Biophys Acta 26:517–521

    Article  PubMed  CAS  Google Scholar 

  • Berrier C, Coulombe A, Houssin C, Ghazi A (1989) A patch-clamp study of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes. Pressure-activated channels are localized in the inner membrane. FEBS Lett 259:27–32

    Article  PubMed  CAS  Google Scholar 

  • Brehm P, Kullberg K, Moody-Corbett F (1984) Properties of nonjunctional acetylcholine receptor channels on innervated muscle oiXenopus laevis. J Physiol (Lond) 350:631–648

    CAS  Google Scholar 

  • Brezden BL, Gardner DR, Morris CE (1986) A potassium selective channel in isolated Lymnea stagnalis heart muscle cells. J Exp Biol 123:175–189

    Google Scholar 

  • Britten RJ, McClure FT (1962) The amino acid pool of Escherichia coli. Bact Rev 26:292–335

    PubMed  CAS  Google Scholar 

  • Buechner M, Delcour AH, Martinac B, Adler J, Kung C (1990) Ion channel activities in the Escherichia coli outer membrane. Biochim Biophys Acta 1024:111–121

    Article  PubMed  CAS  Google Scholar 

  • Cooper KE, Tang JM, Rae JL, Eisenerg RS (1986) A cation channel in frog lens epithelia responsive to pressure and calcium. J Membr Biol 93:259–269

    Article  PubMed  CAS  Google Scholar 

  • Criado M, Keller B (1987) A membrane fusion strategy for single-channel recordings of membranes usually non-accessible to patch-clamp pipette electrodes. FEBS Lett 224:172–176

    Article  PubMed  CAS  Google Scholar 

  • Delcour AH, Martinac B, Adler J, Kung C (1989a) Modified reconstitution method used in patch-clamp studies of Escherichia coliion channels. Biophys J 56:631–636

    Article  PubMed  CAS  Google Scholar 

  • Delcour AH, Martinac B, Adler J, Kung C (1989b) Voltage-sensitive ion channel of Escherichia coli. J. Membr Biol 112:267–275

    Article  PubMed  CAS  Google Scholar 

  • Epstein W, Shultz SG (1965) Cation transport in Escherichia coli. V. Regulation of cation content. J Gen Physiol 49:221–234

    Article  PubMed  CAS  Google Scholar 

  • Falke LC, Edwards KL, Pickard BG, Misler S (1988) A stretch-activated anion channel in tobacco protoplasts. FEBS Lett 237:141–144

    Article  PubMed  CAS  Google Scholar 

  • Guharay G, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701

    PubMed  CAS  Google Scholar 

  • Gustin MC, Zhou X-L, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765

    Article  PubMed  CAS  Google Scholar 

  • HaÃœ MN, Silhavy TJ (1981) Genetic analysis of the major outer membrane proteins of Escherichia coli. Ann Rev Genet 15:91–142

    Article  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recordings from cells and cell-free membrane patches. Pfluegers Arch Eur J Physiol 391:85–100

    Article  CAS  Google Scholar 

  • Kennedy EP (1982) Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides inEscherichia coli. Proc Natl Acad Sci USA 79:1092–1095

    Article  PubMed  CAS  Google Scholar 

  • Le Rudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    Article  PubMed  Google Scholar 

  • Li C, Boileau AJ, Kung C, Adler J (1988) Osmotaxis in Escherichia coli. Proc Natl Acad Sci USA 85:9451–9455

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, van Alphen L (1983) Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta 737:51–115

    PubMed  CAS  Google Scholar 

  • Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA 84:2297–2301

    Article  PubMed  CAS  Google Scholar 

  • Martinac B, Delcour AH, Buechner M, Adler J, Kung C (1988) Pressure-induced membrane tension activates a mechanosensitive ion channel in the outer membrane of the bacterium Escherichia coli. Biophys J 55:494a

    Google Scholar 

  • Martinac B, Tengowski MW, Adler J, Kung C (1990a) Effect of amphipaths on pressure sensitivity of the mechanosensitive ion channel in Escherichia coli. Biophys J 57:323a

    Google Scholar 

  • Martinac B, Adler J, Kung C (1990b) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263

    Article  PubMed  CAS  Google Scholar 

  • Mizushima S (1985) Structure, assembly, and biogenesis of the outer membrane. In: Nanninga N (ed) Molecular cytology of Escherichia coli. Academic Press, London, pp 39–75

    Google Scholar 

  • Molnar J, Holland IB, Mandi Y (1977) Selection of Ion mutants in Escherichia coli by treatment with phenothiazines. Genet Res Camb 30:13–20

    Article  CAS  Google Scholar 

  • Neuberger A, Wilson BM (1967) Inhibition of lysozyme by N-acyl-D-glucosamine derivatives. Nature (Lond) 215:524–525

    Article  CAS  Google Scholar 

  • Nikaido H, Vaara M (1987) Outer membrane. In: Neidhardt FC, Ingraham JL, Magasanik B, Brooks Low K, Schaechter M, Edwin Umberger H (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, Vol. I. Am Soc Microbiol, Washington, DC, pp 7–15

    Google Scholar 

  • Obaseiki-Ebor EE, Akerele JO (1988) The mutagenic activity of chlorpromazine. Mutat Res 208:33–38

    Article  PubMed  CAS  Google Scholar 

  • Ohmori H (1984) Studies of ionic currents in the isolated vestibular hair cell of the chick. J Physiol (Lond) 350:561–581

    CAS  Google Scholar 

  • Raetz C (1986) Molecular genetics of membrane phospholipid synthesis. Ann Rev Genet 20:253–295

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE, Lenard J (1977) Membrane asymmetry. The nature of membrane asymmetry provides clues to the puzzle of how membranes are assembled. Science 195:743–753

    Article  PubMed  CAS  Google Scholar 

  • Rosenbusch JP (1974) Characterization of the major envelope protein of Escherichia coli. Regular arrangement of the peptidoglycan and unusual dodecyl-sulphate binding. J Biol Chem 249:8019–8029

    PubMed  CAS  Google Scholar 

  • Ruthe H-J, Adler J (1985) Fusion of bacterial spheroplasts by electric fields. Biochim Biophys Acta 819:105–113

    Article  PubMed  CAS  Google Scholar 

  • Sachs F (1988) Mechanical transduction in biological systems. CRC Crit Rev Biomed Eng 16:141–169

    CAS  Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 71:4457–4461

    Article  PubMed  CAS  Google Scholar 

  • Sigurdson WJ, Morris CE, Brezden BL, Gardner DR (1987) Stretch activation of a K+ channel in molluscan heart cells. J Exp Biol 127:191–209

    Google Scholar 

  • Sonntag I, Schwarz H, Hirota Y, Henning U (1978) Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J Bacteriol 136:280–285

    PubMed  CAS  Google Scholar 

  • Stock JB, Rauch B, Roseman S (1977) Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem 252:7850–7861

    PubMed  CAS  Google Scholar 

  • Zoratti M, Petronilli V (1988) Ion-conducting channels in a gram-positive bacterium. FEBS Lett 240:105–109

    Article  PubMed  CAS  Google Scholar 

  • Zoratti M, Petronilli V, Szabo I (1990) Stretch-activated composite ion channels in Bacillus subtilis. Biochem Biophys Res Commun 168:443–450

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martinac, B., Delcour, A.H., Buechner, M., Adler, J., Kung, C. (1992). Mechanosensitive Ion Channels in Bacteria. In: Ito, F. (eds) Comparative Aspects of Mechanoreceptor Systems. Advances in Comparative and Environmental Physiology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76690-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76690-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76692-3

  • Online ISBN: 978-3-642-76690-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics