Skip to main content

A Physicochemical Basis for the Selection of Osmolytes by Nature

  • Conference paper
Water and Life

Abstract

It is a striking fact of nature that compounds used as cellular osmolyte systems by a variety of plant and animal vertebrate and invertebrate systems are confined to a small number of chemical structures, all, or most of which are distributed over the entire gamut of organisms (Yancey et al. 1982; Somero 1986; Somero, this Vol.). These comprise sugars and other polyols, amino acids and amino acid derivatives, methylamines, and in some cases urea, frequently in combination with methylamines All are electrically neutral molecules. With the exception of urea all of these organic osmolytes are “compatible solutes” (Brown and Simpson 1972; Clark 1985), i.e., they do not disturb cellular structure and function. Among amino acids, arginine and lysine are not used as osmolytes (Yancey et al. 1982). They are known to be “incompatible” (Somero 1986), in that they interfere with some biochemical processes. Nor are amino acids that contain large hydrophobic side chains used. It is noteworthy that in a case where arginine is released it is immediately converted to the “compatible” solute octopine (Hochachka et al. 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa T, Timasheff SN (1982) Stabilization of protein structure by sugars. Biochemistry 21: 6536–6544

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1983) Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch Biochem Biophys 224: 169–177

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1984a) The mechanism of action of Na glutamate, glysine HCI, and PIPES in the stabilization of tubulin and microtubule formation. J Biol Chem 259: 4979–4986

    PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1984b) Protein stabilization and destabilization by guanidinium salts. Biochemistry 23: 5924–5929

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1985a) Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry 24: 6756–6762

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1985b) The stabilization of proteins by osmolytes. Biophys J 47: 411–414

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Bhat R, Timasheff SN (1990) Preferential interactions determine protein solubility in three-component solutions: The MgCl2 system. Biochemistry 29: 1914–1923

    Article  PubMed  CAS  Google Scholar 

  • Berkeley the Earl of, Hartley EGJ (1906) On the osmotic pressure of some concentrated aqueous solutions. Trans R Soc Lond A 206: 481–507

    Article  Google Scholar 

  • Borowitzka LJ, Brown AD (1974) The salt relations of marine and halophilic species of the unicellular green alga, Duneliella. The role of glycerol as compatible solute. Arch Microbiol 96: 37–52

    Article  CAS  Google Scholar 

  • Bowlus RD, Somero GN (1979) Solute compatibility with enzyme function and structure: rationales for the selection of osmotic agents and end-products of anaerobic metabolism in marine invertebrates. J Exp Zool 208: 137–152

    Article  PubMed  CAS  Google Scholar 

  • Brown AD, Simpson JR (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol 72: 589–591

    PubMed  CAS  Google Scholar 

  • Bull HB, Breese K (1974) Surface tension of amino acid solutions: a hydrophobicity scale of the amino acid residues. Arch Biochem Biophys 161: 665–670

    Article  PubMed  CAS  Google Scholar 

  • Clark ME (1985) The osmotic role of amino acids: Discovery and function. In: Gilles R, Gilles Baillien M (eds) Transport processes, iono-and osmoregulation. Springer, Berlin Heidelberg New York, pp 412–423

    Chapter  Google Scholar 

  • Clark ME, Zounes M (1977) The effects of selected cell osmolytes on the activity of lactate dehydrogenase from the euryhaline polychaete, Nereis succinea. Biol Bull, Woods Hole, Mass, 153: 468–484

    Article  CAS  Google Scholar 

  • Cohn EJ, Edsall JT (1943) Proteins, amino acids and peptides. Reinhold, New York, p 218

    Google Scholar 

  • Frazer JCW, Myrick RT (1916) Osmotic pressure of sucrose solutions at 30 °C. J Am Chem Soc 38: 1907–1922

    Article  CAS  Google Scholar 

  • Gekko K, Koga S (1984) The stability of protein structure in aqueous propylene glycol amino acid solubility and preferential solvation of protein. Biochim Biophys Acta 786: 151–160

    Article  CAS  Google Scholar 

  • Gekko K, Morikawa T (1981) Preferential hydration of bovine serum albumin in polyhydric alcohol-water mixtures. J Biochem Jpn 90: 39–50

    CAS  Google Scholar 

  • Gekko K, Timasheff SN (1981) Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 20: 4667–4676

    Article  PubMed  CAS  Google Scholar 

  • Gibbs JW (1878) On the equilibrium of heterogeneous substances. Trans Conn Acad 3: 343–524

    Google Scholar 

  • Hochachka PW, Hartline PH, Fields JHA (1977) Octopine as an end product of anaerobic glycolysis in the chambered nautilus. Science 195: 72–74

    Article  PubMed  CAS  Google Scholar 

  • Landt E (1931) The surface tensions of solutions of various sugars. Z Ver Dtsch Zuckerind 81: 119–124

    CAS  Google Scholar 

  • Lee JC, Timasheff SN (1974) Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride. Biochemistry 13: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Timasheff SN (1981) The stabilization of proteins by sucrose. J Biol Chem 256: 7193–7201

    PubMed  CAS  Google Scholar 

  • Low PS (1985) Molecular basis of the biological compatibility of Nature’s osmolytes. In: Gilles R, Gilles-Baillien M (eds) Transport processes, iono-and osmoregulation. Springer, Berlin Hei-delberg New York, pp 469–477

    Chapter  Google Scholar 

  • Melander W, Horvath C (1977) Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: An interpretation of the lyotropic series. Arch Biochem Biophys 183: 200–215

    Article  PubMed  CAS  Google Scholar 

  • Morse HN, Holland WW, Myers CN, Cash G, Zinn JB (1912) The omostic pressure of cane sugar solutions at high temperature. In: Washburn EW (ed) International Critical Tables (1928) 4:429. Am Chem J 48: 29–94

    Google Scholar 

  • Na GC, Timasheff SN (1981) Interaction of calf brain tubulin with glycerol. J Mol Biol 151: 165–178

    Article  PubMed  CAS  Google Scholar 

  • Pappenheimer JR, Lepie MP, Wyman J Jr (1936) The surface tension of aqueous solutions of dipolar ions. J Am Chem Soc 58: 1851–1855

    Article  CAS  Google Scholar 

  • Pollard A, Wyn-Jones RG (1979) Enzyme activities in concentrated solutions of glycine betaine and other solutes. Planta 144: 291–298

    Article  CAS  Google Scholar 

  • Scatchard G, Prentiss SS (1934) Freezing points of aqueous solutions. VIII. J Am Chem Soc 56: 2314–2319

    Article  CAS  Google Scholar 

  • Smith PK, Smith ERB (1937) The activity of aliphatic amino acids in aqueous solution at 25 °C. J Biol Chem 121: 607–613

    CAS  Google Scholar 

  • Smith PK, Smith ERB (1940) The activities of some hydroxy-and N-methylamino acids and proline in aqueous solution at 25 °C. J Biol Chem 132: 57–64

    CAS  Google Scholar 

  • Somero GN (1986) Protons, osmolytes, and fitness of internal milieu for protein function. Am J Physiol 251: R197 - R213

    PubMed  CAS  Google Scholar 

  • Tanford C (1973) The hydrophobic effect: formation of micelles and biological membranes. Wiley, New York London

    Google Scholar 

  • Timasheff SN (1991) Stabilization of protein structure by solvent additives. In: Ahern TJ, Manning M (eds) Stability of protein pharmaceuticals: in vivo pathways of degradation and strategies for protein stabilization, Vol 3

    Google Scholar 

  • von Hippel PH, Wong K-Y (1965) On the conformational stability of globular proteins. J Biol Chem 240: 3909–3923

    Google Scholar 

  • von Hippel PH, Wong K-Y (1965) On the conformational stability of globular proteins. The effects of various electrolytes and nonelectrolytes on the thermal ribonuclease transition. J Biol Chem 240: 3909–3923

    Google Scholar 

  • Warner DT (1962) Some possible relationships of carbohydrates and other biological components with the water structure at 37 °. Nature (Lond) 196: 1055–1058

    Article  CAS  Google Scholar 

  • Wyman J Jr (1964) Linked functions and reciprocal effects in hemoglobin: a second look. Adv Protein Chem 19: 223–286

    Article  PubMed  CAS  Google Scholar 

  • Wyn-Jones RG, Storey R, Leigh RA, Ahmad N, Pollard A (1977) A hypothesis on cytoplasmic osmoregulation. In: Marre E, Cifferi O (eds) Regulation of cell membrane activities in plants. North Holland, Amsterdam, p 121

    Google Scholar 

  • Yancey PH, Somero GN (1979) Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem J 183: 317–323

    PubMed  CAS  Google Scholar 

  • Yancey PH, Somero GN (1980) Methylamine osmoregulatory solutes of elasmobranch fishes coun-teract urea inhibition of enzymes. J Exp Zool 212: 205–213

    Article  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Timasheff, S.N. (1992). A Physicochemical Basis for the Selection of Osmolytes by Nature. In: Somero, G.N., Osmond, C.B., Bolis, C.L. (eds) Water and Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76682-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76682-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76684-8

  • Online ISBN: 978-3-642-76682-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics