Skip to main content

Ice Nucleating Agents in Cold-Hardy Insects

  • Conference paper
Water and Life

Abstract

Water is the solvent of all biological systems. Whenever insects and other poikilothermic animals are exposed to subfreezing temperatures, there is a possibility that their body water will freeze. Organismal freezing is usually fatal. The problems of survival at subzero temperatures are thus to a great extent the problems of how to deal with the body water at subzero temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baust JG (1973) Mechanisms of cryoprotection in freeze-tolerant animal systems. Cryobiology 10: 197–205

    Article  PubMed  CAS  Google Scholar 

  • Baust JG, Rojas RR (1985) Review — insect cold hardiness: facts and fancy. J Insect Physiol 31: 755–759

    Article  Google Scholar 

  • Baust JG, Zachariassen KE (1983) Seasonally active cell matrix associated ice nucleators in an insect. Cryobiol Lett 4: 65–71

    Google Scholar 

  • Block W (1990) Cold tolerance of insects and other arthropods. Phil Trans R Soc Lond B 326: 613–633

    Article  Google Scholar 

  • Duman JG (1977) The role of macromolecular antifreeze in the darkling beetle Meracantha contracta. J Comp Physiol 115: 279–286

    CAS  Google Scholar 

  • Duman JG, Horwath K (1983) The role of hemolymph proteins in the cold-tolerance of insects. Annu Rev Physiol 45: 261–270

    Article  PubMed  CAS  Google Scholar 

  • Duman JG, Horwath K, Tomchaney A, Patterson JL (1982) Antifreeze agents in terrestrial arthropods. Comp Biochem Physiol 73A: 545–555

    Article  Google Scholar 

  • Duman JG, Morris JP, Castellino FJ (1984) Purification and composition of an ice nucleating protein from queens of the hornet, Vespula maculata. J Comp Physiol 154: 79–83

    CAS  Google Scholar 

  • Farrant J (1969) Is there a common mechanism of protection of living cells by polyvinylpyrrolidone and glycerol during freezing? Nature (Lond) 222: 1175–1176

    Article  CAS  Google Scholar 

  • Farrant J (1980) General observations on cell preservation. In: Ashwood-Smith MJ, Farrant J (eds) Low temperature preservation in biology and medicine. Univ Park Press, Baltimore

    Google Scholar 

  • Gehrken U, Thorsrud AK (1988) Temperature modification of protein appearance in insects in relation to cold hardiness. In: Gehrken U (ed) Mechanisms involved in insect cold tolerance. Doct Thesis, Univ Oslo

    Google Scholar 

  • Green RL, Warren GJ (1985) Physical and functional repetition in a bacterial ice nucleation gene. Nature (Lond) 317: 645–648

    Article  CAS  Google Scholar 

  • Hansen T (1973) Variations in glycerol content in relation to cold-hardiness in larvae of Petrova rosinella L. (Lepidoptera, Tortricidae). Eesti NSV Tead Akad Toim Biol 22: 105–112

    CAS  Google Scholar 

  • Husby JA, Zachariassen KE (1980) Antifreeze agents in the body fluid of winter active insects and spiders. Experientia 36: 963–964

    Article  CAS  Google Scholar 

  • Kanwisher JW (1959) Histology and metabolism of frozen intertidal animals. Biol Bull 116: 258–264

    Article  Google Scholar 

  • Knight CA (1967) The freezing of supercooled liquids. Van Nostrand, Princeton, New York

    Google Scholar 

  • Kosloff LM, Lute M, Arellano F (1987) Role of phosphatidylinositol in ice nucleation. Pap 3rd Int Conf Ice Nucleation, October 1987, Newport, Oregon

    Google Scholar 

  • Lovelock JE (1953) The mechanism of the cryoprotective effect of glycerol against freezing and thawing. Biochim Biophys Acta 11: 28–36

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie AP (1977) Non-equilibrium freezing behaviour of aqueous systems. Phil Trans R Soc London Biol Sci 278: 167–189

    Article  CAS  Google Scholar 

  • Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47: 347–369

    Article  PubMed  CAS  Google Scholar 

  • Meryman HT (1971) Osmotic stress as a mechanism of freezing injury. Cryobiology 8: 489–500

    Article  PubMed  CAS  Google Scholar 

  • Moiseyev VA, Nardid OA, Belons AM (1982) On a possible mechanism of the protective action of cryoprotectants. Cryobiol Lett 3: 17–26

    Google Scholar 

  • Mueller GM, Wolber PK, Warren GJ (1990) Clustering of ice nucleation protein correlates with ice nucleation activity. Cryobiology 27: 416–422

    Article  PubMed  CAS  Google Scholar 

  • Neven LG, Duman JG, Beals JM, Castellino FJ (1986) Overwintering adaptations in the stag beetle, Ceruchus piceus: removal of ice nucleators in the winter to promote supercooling. J Comp Physiol 156: 707–716

    CAS  Google Scholar 

  • Neven LG, Duman JG, Low MG, Sehl CL, Castellino FJ (1989) Purification and characterization of an insect hemolymph lipoprotein ice nucleator: evidence for the importance of phosphatidylinositol and apolipoprotein in the ice nucleator activity. J Comp Physiol 159B: 71–82

    CAS  Google Scholar 

  • Ring R (1982) Freezing-tolerant insects with low supercooling points. Comp Biochem Physiol 73A: 605–612

    Article  Google Scholar 

  • Schmidt-Nielsen K (1983) Animal physiology: adaptation and environment, 3rd edn. Cambridge Univ Press, Cambridge Lond

    Google Scholar 

  • Salt RV (1953) The influence of food on cold hardiness of insects. Can Entomol 85:261–269

    Article  Google Scholar 

  • Salt RV (1961) Principles of insect cold hardiness. Annu Rev Entomol 6: 55–74

    Article  Google Scholar 

  • S¢mme L (1982) Supercooling and winter survival in terrestrial arthropods. Comp Biochem Physiol 73A: 519–543

    Article  Google Scholar 

  • S¢mme L, Block W (1982) Cold hardiness of Collembola at Signy Island, maritime Antarctic. Oikos 38: 168–176

    Article  Google Scholar 

  • S¢mme L, Conradi-Larsen EM (1977) Cold-hardiness of collembolans and oribatid mites from windswept mountain ridges. Oikos 29: 118–126

    Article  Google Scholar 

  • S¢mme L, Zachariassen KE (1981) Adaptations to low temperature in high altitude insects from Mount Kenya. Ecol Entomol 6: 199–204

    Article  Google Scholar 

  • Storey KB, Storey JM (1988) Freeze tolerance in animals. Physiol Rev 68: 27–83

    PubMed  CAS  Google Scholar 

  • Tomchaney AP (1981) The purification and characterization of a thermal hysteresis protein from the larvae of Tenebrio molitor. Master’s Thesis, Univ Notre Dame

    Google Scholar 

  • van der Laak S (1982) Physiological adaptations to low temperature in freezing-tolerant Phyllodecta laticollis beetles. Comp Biochem Physiol 73A: 613–620

    Google Scholar 

  • Xu L, Neven LG, Duman JG (1990) Hormonal control of hemolymph lipoprotein ice nucleators in overwintering freeze-susceptible larvae of the stag beetle Ceruchus pecans: adipokinetic hormone and juvenile hormone. J Comp Physiol 160: 51–59

    CAS  Google Scholar 

  • Zachariassen KE (1980) The role of polyols and nucleating agents in cold-hardy insects. J Comp Physiol 140: 227–234

    CAS  Google Scholar 

  • Zachariassen KE (1982) Nucleating agents in cold-hardy insects. Comp Biochem Physiol 73A:557–562

    Article  CAS  Google Scholar 

  • Zachariassen KE (1985) Physiology of cold-tolerance in insects. Physiol Rev 65: 799–832

    PubMed  CAS  Google Scholar 

  • Zachariassen KE (1989) Thermal adaptations to polar environments. In: Mercer JB (ed) Thermal physiology 1989. Proc Int Symp Thermal Physiol Tromso, Norway, 16–17 July 1989. Exerpta Med, Elsevier, Amsterdam New York

    Google Scholar 

  • Zachariassen KE (1990) The water relations of overwintering insects. In: Lee RE, Denlinger D (eds) Insects at low temperature. Chapman and Hall, New York Lond, pp 47–63

    Google Scholar 

  • Zachariassen KE, Hammel HT (1976) Nucleating agents in the hemolymph of insects tolerant to freezing. Nature (Lond) 262: 285–287

    Article  CAS  Google Scholar 

  • Zachariassen KE, Hammel HT (1988) The effect of ice-nucleating agents on ice nucleating activity. Cryobiology 25: 143–147

    Article  Google Scholar 

  • Zachariassen KE, Baust JB, Lee RE (1982) A method for quantitative determination of ice nucleating agents in insect hemolymph. Cryobiology 19: 180–184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zachariassen, K.E. (1992). Ice Nucleating Agents in Cold-Hardy Insects. In: Somero, G.N., Osmond, C.B., Bolis, C.L. (eds) Water and Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76682-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76682-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76684-8

  • Online ISBN: 978-3-642-76682-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics