Skip to main content

Structure and Function of Drosophila Heat Shock Factor

  • Conference paper
Heat Shock

Abstract

In eukaryotic cells, the synthesis of heat shock proteins is subject to transcriptional and post-transcriptional control in eukaryotic cells (reviewed by Craig, 1985; Lindquist, 1986). Heat shock-inducible transcription is mediated by a positive control element, the heat shock element (HSE), defined as three repeats of a 5-nucleotide [-GAA-] module, arranged in alternating orientation (Pelham, 1982; Amin etal., 1988; Xiao and Lis, 1988). Multiple copies of the HSE are found upstream of all heat shock genes. A heat shock transcriptional activator, termed heat shock factor (HSF), binds to HSEs and activates transcription of heat shock genes in vitro (Wu, 1984a; Wu, 1984b; Parker and Topol, 1984; Topol etal., 1985). Although the sequence of the HSE has been highly conserved in evolution, HSF purified from yeast, Drosophila, and human cells differ in molecular size (150 kD, 110 kD and 83 kD, respectively; Sorger and Pelham, 1987; Wu et al., 1987; Goldenberg etal., 1988). Yeast and higher eukaryotes also differ in the regulation of HSF activity. In yeast, HSF bound constitutively to the HSE apparently stimulates transcription when phosphorylated under heat shock conditions. In Drosophila and vertebrate cells, HSF is unable to bind to the HSE unless the cells are heat shocked (for a review, see Wu etal., 1990). The heat-inducible binding of HSF appears to be a major regulatory step in the pathway to heat shock gene activation in higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amin, J, Ananthan, J and Voellmy, R, (1988) Key features of heat shock regulatory elements. Mol. Cell. Biol., 8: 3761–3769.

    PubMed  CAS  Google Scholar 

  • Ashburner, M and Bonner, JJ, (1979) The induction of gene activity in Drosophila by heat shock. Cell, 17: 241–254.

    Article  PubMed  CAS  Google Scholar 

  • Bardwell, JC and Craig, EA, (1984) Major heat shock gene of Drosophila and Escherichia coli heat inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. USA, 81: 848–852.

    Article  CAS  Google Scholar 

  • Biggin, MD and Tjian, R, (1988) Transcription factors that activate the ultrabithorax promoter in developmentally staged extracts. Cell, 53: 699–711.

    Article  PubMed  CAS  Google Scholar 

  • Clos, J, Westwood, JT, Becker, PB, Wilson, S, Lambert, K and Wu, C, (1990) Molecular cloning and expression of a hexameric heat shock factor subject to negative regulation. Cell, in press.

    Google Scholar 

  • Cohen, C, and Parry, DAD, (1990) α-helical coiled coils and bundles: How to design an α-helical protein. Proteins, 7: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Craig, EA, (1985) The heat shock response. Crit. Rev. Biochem., 18: 239–280.

    Article  CAS  Google Scholar 

  • Goldenberg, CJ, Luo, Y, Fenna, M, Baler, R, Weinmann, R and Voellmy, R. (1988) Purified human factor activates heat shock promoter in a HeLa cell-free transcription system. J. Biol. Chem., 263: 19734–19739.

    PubMed  CAS  Google Scholar 

  • Gribskov, M and Burgess, RR, (1986) Sigma factors from E. coli, B. subtilis, phage SPOl, and phage T4 are homologous proteins. Nucl. Acids Res., 14: 6745–6763.

    Article  PubMed  CAS  Google Scholar 

  • Helmann, JD and Chamberlin, MJ (1988) Structure and function of bacterial sigma factors. Ann. Rev. Biochem., 57: 839–872.

    Article  PubMed  CAS  Google Scholar 

  • Kingston, RE, Schuetz, TJ and Larin, Z, (1987) Heat inducible human factor that binds to a human hsp 70 promoter. Mol. Cell. Biol., 7: 1530–1534.

    PubMed  CAS  Google Scholar 

  • Landschulz, WH, Johnson, PF and McKnight, SL, (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science, 240: 1759–1764.

    Article  PubMed  CAS  Google Scholar 

  • Larson, JS, Schuetz, TJ and Kingston, RE, (1988) Activation in vitro of sequence specific DNA binding by a human regulatory factor. Nature, 335: 372–375.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S, (1986) The heat shock response. Ann. Rev. Biochem., 55: 1151–1191.

    CAS  Google Scholar 

  • Mosser, DD, Kotzbauer, PT, Sarge, KD and Morimoto, R, (1990) In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc. Nat. Acad. Sci. USA, 87: 3748–3752.

    Article  PubMed  CAS  Google Scholar 

  • Nover, L, Hellmund, D, Neumann, D, Scharf, K-D and Serfling, E, (1984) The heat shock response of eukaryotic cells. Biol. Zentr., 103: 357–435.

    CAS  Google Scholar 

  • O’Shea, EK, Rutkowski, R, Stafford, WFIII and Kim, PS, (1989) Preferential heterodimer formation by isolated leucine zippers from Fos and Jun. Science, 245: 646–648.

    Article  PubMed  Google Scholar 

  • Parker, CS and Topol, J, (1984) A Drosophila RNA polymerase II transcription factor contains a promoter-region-specific DNA binding activity. Cell, 36: 357–369.

    Article  PubMed  CAS  Google Scholar 

  • Pelham, HRB, (1982) A regulatory upstream element in the Drosophila hsp 70 heat shock gene. Cell, 30: 517–528.

    Article  PubMed  CAS  Google Scholar 

  • Pelham, HRB, (1990) Functions of the hsp70 protein family: an overview. In: Stress Proteins in Biology and Medicine, Morimoto, RI, Ussieres, A and Georgopolous, C (eds.). Cold Spring Harbor Laboratory Press, 287–299.

    Google Scholar 

  • Perisic, O, Xiao, H and Lis, JT, (1989) Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell, 59: 797–806.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, JE, (1989) Polypeptide chain binding proteins: Catalysts of protein folding and related processes in cells. Cell, 59: 591–601.

    Article  PubMed  CAS  Google Scholar 

  • Soeller, WC, Poole, SJ and Kornberg, T, (1988) In vitro transcription of the Drosophila engrailed gene. Genes Dev., 2: 68–81.

    Article  PubMed  CAS  Google Scholar 

  • Sorger, PK and Pelham, HRB (1987) Purification and characterization of a heat shock element binding protein from yeast. EMBO J., 6: 3035–3041.

    PubMed  CAS  Google Scholar 

  • Sorger, PK and Pelham, HRB, (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell, 54: 855–864.

    Article  PubMed  CAS  Google Scholar 

  • Sorger, PK and Nelson, HCM (1989) Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell, 59: 807–813.

    Article  PubMed  CAS  Google Scholar 

  • Sorger, PK, (1990) Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell, 62: 793–805.

    Article  PubMed  CAS  Google Scholar 

  • Studier, FW and Moffatt, BA, (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol., 189: 113–130.

    Article  PubMed  CAS  Google Scholar 

  • Topol, J, Ruden, DM and Parker, CS (1985) Sequences required for in vitro transcriptional activation of a Drosophila hsp70 gene. Cell, 42: 527–537.

    Article  PubMed  CAS  Google Scholar 

  • Wiederrecht, G, Seto, D and Parker, CS, (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell, 54: 841–853.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C, (1984a) Two protein-binding sites in chromatin implicated in the activation of heat shock genes. Nature, 309: 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C, (1984b) Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature, 311: 81–84.

    Article  CAS  Google Scholar 

  • Wu, C, Wilson, S, Walker, B, Dawid, I, Paisley, T, Zimarino, V, and Ueda, H, (1987) Purification and properties of Drosophila heat shock activator protein. Science, 238: 1247–1253.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, H and Lis, JT (1988) Germline transformation used to define key features of the heat shock response element. Science, 239: 1139–1142.

    Article  PubMed  CAS  Google Scholar 

  • Zimarino, V and Wu, C (1987) Induction of sequence specific binding of Drosophila heat shock activator protein without protein synthesis. Nature, 327: 727–730.

    Article  PubMed  CAS  Google Scholar 

  • Zimarino, V, Tsai, C and Wu, C (1990a) Complex modes of heat shock factor activation. Mol. Cell. Biol., 10: 752–759.

    CAS  Google Scholar 

  • Zimarino, V, Wilson, S and Wu, C, (1990b) Antibody-mediated activation of Drosophila heat shock factor in vitro. Science, 249: 546–549.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, C., Clos, J., Westwood, J.T., Zimarino, V., Becker, P.B., Wilson, S. (1991). Structure and Function of Drosophila Heat Shock Factor. In: Maresca, B., Lindquist, S. (eds) Heat Shock. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76679-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76679-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76681-7

  • Online ISBN: 978-3-642-76679-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics