Skip to main content

Radiative stabilization following transfer of two electrons to Xeq+ (q ≤ 35) in slow collisions with He and Xe

  • Conference paper
Atomic Physics of Highly Charged Ions
  • 131 Accesses

Abstract

We present a derivation of an ECB-based relation between the branching ratio for autoionization F and the ratio between the cross sections for transfer ionization and single-electron capture. We apply this method to two different experimental results. The method yields semi-empirical upper limits for F of unity for double Rydberg levels formed in Xeq+-He collisions for charge states up to q=29. The fact that direct measurements of σTI/(σTI + σDC) leads to values in the range 0.9<.F<1.0 for the He collisions gives strong support for using the model for the Xeq+-Xe results, where no direct measurements of true double-capture cross sections were made. The latter results show a rather strong decrease of the upper limits for F to values significantly below unity for q>25. We point out that the apparent discrepancy between the results obtained for He and Xe targets at high q could be explained by population of higher angular momentum (l, l′) states in the latter case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Andersson, G. Astner, and H. Cederquist, J. Phys. B: At. Mol. Opt. Phys. 21, L187 (1988).

    Article  ADS  Google Scholar 

  2. H. Cederquist et al. ,Phys. Rev. Lett. 62, 1465 (1989).

    Article  ADS  Google Scholar 

  3. H. Andersson et al. ,Physica Scripta, 42, 150 (1990).

    Article  ADS  Google Scholar 

  4. A. Bárány et al. ,Nucl. Instr. Meth. B 9, 397 (1985).

    Article  ADS  Google Scholar 

  5. P. Hvelplund et al. ,Nucl. Instr. Meth. B 9, 421 (1985).

    Article  ADS  Google Scholar 

  6. A. Bordenave-Montesquieu et al. ,J. Phys. B: At. Mol. Phys. 17, L127 (1984).

    Article  ADS  Google Scholar 

  7. P. Moretto-CapeUe et al. ,J. Phys. B: At. Mol. Opt. Phys. 22, 271 (1989).

    Article  ADS  Google Scholar 

  8. P. Rocin et al. ,Europhys. Lett. 3, 53 (1987).

    Article  ADS  Google Scholar 

  9. H. Laurent et al. ,J. Phys. B: At. Mol. Phys. 20, 6581 (1987).

    Article  ADS  Google Scholar 

  10. C. Biedermann et al. ,Phys. Rev. A 41, 5889 (1990).

    Article  ADS  Google Scholar 

  11. R.K. Janev and L.P. Presnyakov, Phys. Rep. 70, 1 (1981).

    Article  ADS  Google Scholar 

  12. J.E. Hansen J. de Phys. (Paris) 50 Cl-603 (1989).

    Google Scholar 

  13. T. Iwai et al. ,J. Phys. B: At. Mol. Phys. 17, L95 (1984).

    Article  ADS  Google Scholar 

  14. H. Tawara et al. ,J. Phys. B: At. Mol. Phys. 18, 337 (1985).

    Article  ADS  Google Scholar 

  15. R. Mann, Z. Phys. D 3, 85 (1986).

    Article  ADS  Google Scholar 

  16. H. Cederquist, Phys. Rev. A, submitted (1990).

    Google Scholar 

  17. A. Miiller and A. Salzborn, Phys. Lett. 62A, 391 (1977).

    ADS  Google Scholar 

  18. E.H. Nielsen et al. ,J. Phys. B: At. Mol. Phys. 18, 1789 (1985).

    Article  ADS  Google Scholar 

  19. A. Miiller, C. Achenbach, and E. Salzborn, Phys. Lett. 70A, 410 (1979).

    ADS  Google Scholar 

  20. D.H. Crandall, R.A. Phaneuf, and F.W. Meyer, Phys. Rev. A 22, 379 (1980).

    Article  ADS  Google Scholar 

  21. E.H. Nielsen et al. ,J. Phys. B: At Mol. Phys. 17, L139 (1984).

    Article  ADS  Google Scholar 

  22. Y. Nakai and T. Shirai, Physica Scripta T28, 77 (1989).

    Article  ADS  Google Scholar 

  23. C. Biedermann et al. ,Phys. Rev. A, accepted (1990).

    Google Scholar 

  24. D. Dijkkamp et al., J. Phys. B: At. Mol. Phys., 4763 18 (1985).

    Google Scholar 

  25. D. Vernhet et al., J. Phys. B: At. Mol. Opt. Phys. 21, 3949 (1988).

    Article  ADS  Google Scholar 

  26. E.U. Condon and G.H. Shortly, The theory of Atomic Spectra ,pp. 136, London: Cambridge University Press 1935.

    Google Scholar 

  27. W.E. Cooke and T.F. Gallagher, 19, 2151 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Cederquist, H. (1991). Radiative stabilization following transfer of two electrons to Xeq+ (q ≤ 35) in slow collisions with He and Xe. In: Salzborn, E., Mokler, P.H., Müller, A. (eds) Atomic Physics of Highly Charged Ions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76658-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76658-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76660-2

  • Online ISBN: 978-3-642-76658-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics