Patterns in Secondary Structure Packing — a Database for Prediction

  • Nigel P. Brown
Conference paper
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 7)


Most known structures have been derived by X-ray crystallographic means. This technique requires good quality crystals of the protein and almost all structures are of globular proteins. Because of the difficulty of crystallising membrane bound proteins, there is a paucity of structures for these (Eisenberg, 1984). 2D NMR is a relatively new technique producing distance or angle constraints which may be used to determine structures for small proteins in solution (polypeptides of up to around 100 residues have been attempted). Both methods have the practical limitation of requiring samples of the material in appropriate form and purity.


Secondary Structure Projection Plane Axial Vector Good Quality Crystal Vector Sense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abagyan, R. A. and Maiorov, V. N. (1988). A simple qualitative representation of polypeptide chain folds: Comparison of protein tertiary structures. J. Biomol. Structure & Dynamics, 5 (6): 1267–1279.Google Scholar
  2. Bowie, J. U., Reidhaar-Olson, J. E, Lim, W. A., and Sauer, R. T. (1990). Deciphering the message in protein sequences: Tolerance to amino acid substitutions. Science, 247: 1306–1310.PubMedCrossRefGoogle Scholar
  3. Chatfield, C. and Collins, A. J. (1989). Introduction to Multivariate Analysis. Chapman and Hall.Google Scholar
  4. Chothia, C. and Janin, J. (1981). Relative orientation of close-packed β-sheets in proteins. Proc. Natl. Acad. Sci. USA, 78 (7): 4146–4150.PubMedCrossRefGoogle Scholar
  5. Chothia, C., Levitt, M., and Richardson, D. (1977). Structure of proteins: Packing of a-helices and pleated sheets. Proc. Natl. Acad. Sci. USA, 74: 4130–4134.PubMedCrossRefGoogle Scholar
  6. Chothia, C., Levitt, M., and Richardson, D. (1981). Helix to helix packing in proteins. J. Mol. Biol, 145: 215–250.PubMedCrossRefGoogle Scholar
  7. Chothia, C. (1984). Principles that determine the structure of proteins. Ann. Rev. Biochem., 53: 537–572.PubMedCrossRefGoogle Scholar
  8. Eisenberg, D. (1984). Three-dimensional structure of membrane and surface proteins. Ann. Rev. Biochem., 53: 595–623.PubMedCrossRefGoogle Scholar
  9. Finkelstein, A. V. and Ptitsyn, O. B. (1987). Why do globular proteins fit the limited set of folding patterns? Prog. Biophys. Mol. Biol., 50: 171–190.PubMedCrossRefGoogle Scholar
  10. Gray, P., Paton, N., Kemp, G., and Fothergill, J. E. (1990). An object-oriented database for protein structure analysis. Prot. Eng., 3 (4): 235–243.CrossRefGoogle Scholar
  11. Islam, S. A. and Sternberg, M. J. E. (1989). A relational database of protein structures designed for flexible enquiries about conformation. Prot. Eng., 2 (6): 431–442.CrossRefGoogle Scholar
  12. Jaenicke, R. (1987). Folding and association of proteins. Prog. Biophys. Mol. Biol., 49 (23): 117–237.PubMedCrossRefGoogle Scholar
  13. Janin, J. and Chothia, C. (1980). Packing of a-helices onto β–pleated sheets and the anatomy of aβ proteins. J. Mol. Biol., 143: 95–128.PubMedCrossRefGoogle Scholar
  14. Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22: 2577–2637.PubMedCrossRefGoogle Scholar
  15. Lee, B. and Richards, F. M. (1971). The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol., 55: 379–40.PubMedCrossRefGoogle Scholar
  16. Murzin, A. G. and Finkelstein, A. V. (1988). General architecture of the a-helical globule. J. Mol. Biol., 204: 749–769.PubMedCrossRefGoogle Scholar
  17. Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48: 443–453.PubMedCrossRefGoogle Scholar
  18. Orengo, C. A. and Taylor, W. R. (1990). A rapid method of protein structure alignment. J. Theor. Biol., 147: 517–551.PubMedCrossRefGoogle Scholar
  19. Rawlings, C. J., Taylor, W. R., Nyakairu, J., Fox, J., and Sternberg, M. J. E. (1985). Reasoning about protein topology using the logic programming language PROLOG. J. Mol. Graph., 3 (4): 151–157.CrossRefGoogle Scholar
  20. Richards, F. M. and Kundrot, C. E. (1988). Identification of structural motifs from protein coordinate data: Secondary structure and first level supersecondary structure. PROTEINS: Structure, Function, & Genetics, 3: 71–84.CrossRefGoogle Scholar
  21. Richards, F. M. (1977). Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng., 6: 151–176.CrossRefGoogle Scholar
  22. Richardson, J. S. (1981). The anatomy and taxonomy of protein structure. Adv. Prot. Chem., 34: 167–339.CrossRefGoogle Scholar
  23. Richardson, J. S. (1985). Describing patterns of protein tertiary structure. Methods Enzymol., 115: 341–358.PubMedCrossRefGoogle Scholar
  24. Richmond, T. J. and Richards, F. M. (1978). Packing of a-helices: Geometrical constraints and contact areas. J. Mol. Biol., 119: 537–555.PubMedCrossRefGoogle Scholar
  25. Schulz, G. E. and Schirmer, R. H. (1979). Principles of Protein Structure. Springer-Verlag.Google Scholar
  26. Taylor, W. R. and Orengo, C. (1989). Protein structure alignment. J. Mol. Biol., 208: 1–22.PubMedCrossRefGoogle Scholar
  27. Taylor, W. R. (1988). Pattern matching methods in protein sequence comparison and structure prediction. Prot. Eng., 2 (2): 77–86.CrossRefGoogle Scholar
  28. von Heijne, G. (1987). Sequence Analysis in Molecular Biology (Treasure Trove or Trivial Pursuit). Academic Press Inc.Google Scholar
  29. Zvelebil, M. J., Barton, G. J., Taylor, W. R., and Sternberg, M. J. E. (1987). Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J. Mol. Biol., 195: 957–961.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Nigel P. Brown
    • 1
  1. 1.Laboratory of Mathematical BiologyNational Institute for Medical ResearchLondonUK

Personalised recommendations