Advertisement

Assignment of α-Helices in Multiply Aligned Protein Sequences — Applications to DNA Binding Motifs

  • Toby J. Gibson
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 7)

Abstract

The first solved protein structures were helical globular proteins and soon after their availability for structural analysis, it was noted that buried surfaces of α-helices were composed of hydrophobic residues. Schiffer and Edmundson (1967) introduced the helical wheel representation, in which residues are positioned at 100° intervals around a circle (i.e. 3.6 residues per turn) and suggested its use as a predictive tool for helices. Given the variability of helical length and degree of burial in the tertiary structure, the use of this tool alone proved too simplistic and the presence or absence of helices could not be predicted with a high degree of certainty. Nevertheless, the frequent use of helical wheels to plot segments of sequence with good helical amphipathicity testifies to the continuing utility of this simple representation.

Keywords

Zinc Finger Hydrophobic Residue Leucine Zipper Secondary Structure Prediction Zinc Finger Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argos, P. and Palau, J. (1982). Int. J. Protein Peptide Res., 19: 380–393.CrossRefGoogle Scholar
  2. Banner, D. W., Kokkinidis, M., andTsernoglou, D. (1987). J. Mol. Biol., 196: 657–675.PubMedCrossRefGoogle Scholar
  3. Billeter, M., Qian, Y. Q., Otting, G., Miiller, M., Gehring, W. J., and Wiithrich, K. (1990). J. Mol. Biol., 214: 183–197.PubMedCrossRefGoogle Scholar
  4. Brown, R. S. and Argos, P. (1986). Nature, 324: 215.PubMedCrossRefGoogle Scholar
  5. Chou, P. Y. and Fasman, G. D. (1974). Biochemistry, 13: 211–222.PubMedCrossRefGoogle Scholar
  6. Cohen, C. and Parry, D. A. D. (1990). Proteins, 7: 1–15.PubMedCrossRefGoogle Scholar
  7. Crick, F. H. C. (1953). Acta Crystallogr., 6: 689–697.CrossRefGoogle Scholar
  8. Davis, R. L., Cheng, P. F., Lassar, A. B., and Weintraub, H. (1990). Cell, 60: 733–746.PubMedCrossRefGoogle Scholar
  9. Eisenberg, D., Weiss, R. M., andTerwilliger, T. C. (1984). Proc. Natl. Acad. Sci. USA, 81: 140–144.PubMedCrossRefGoogle Scholar
  10. Frampton, J., Leutz, A., Gibson, T. J., and Graf, T. (1989). Nature, 342: 134.PubMedCrossRefGoogle Scholar
  11. Gibson, T. J., Postma, J. P. M., Brown, R. S., and Argos, P. (1988). Protein Eng., 2: 209–218.PubMedCrossRefGoogle Scholar
  12. Gibson, T. J., Sibbald, P. R., and Rice, P. (1991). In press.Google Scholar
  13. Hard, T., Kellenbach, E., Boelens, R., Maler, B. A., Dahlman, K., Freedman, L. P., Carlstedt-Duke, J., Yamamoto, K. R., Gustafsson, J.-A., and Kaptein, R. (1990). Science, 249: 157–160.PubMedCrossRefGoogle Scholar
  14. Kabsch, W. and Sander, C. (1983). FEBS Letts., 155: 179–182.CrossRefGoogle Scholar
  15. Kyte, J. and Doolittle, R. F. (1982). J. Mol. biol., 157: 105–132.PubMedCrossRefGoogle Scholar
  16. Landshutz, W. H., Johnson, P. F., and McKnight, S. L. (1988). Science, 240: 1759–1764.CrossRefGoogle Scholar
  17. Lee, M. S., Gippert, G. P., Soman, K. V., Case, D. A., and Wright, P. E. (1989). Science, 245: 635–637.PubMedCrossRefGoogle Scholar
  18. Lim, V. I. (1974). J. Mol. Biol., 88: 873–894.PubMedCrossRefGoogle Scholar
  19. Miller, J., McLaehlan, A. D., and Klug, A. (1985). EMBO J., 4: 1609–1614.PubMedGoogle Scholar
  20. Murre, C., Schonleber McCaw, P., and Baltimore, P. (1989). Cell, 56: 777–783.PubMedCrossRefGoogle Scholar
  21. Oas, T. G., Mcintosh, L. P., O’Shea, E. K., Dahlquist, F. W., and Kim, P. S. (1990). Biochemistry, 29: 2891–2894.PubMedCrossRefGoogle Scholar
  22. O’Neil, K. T., Hoess, R. H., and DeGrado, W. F. (1990). Science, 249: 774–778.PubMedCrossRefGoogle Scholar
  23. O’Shea, E. K., Rutkowski, R., Stafford, W. F., and Kim, P. S. (1989). Science, 245:646– 648.Google Scholar
  24. Richardson, J. S., Getzoff, E. D., and Richardson, D. C. (1978). Proc. Natl. Acad. Sci. USA, 75: 2574–2578.PubMedCrossRefGoogle Scholar
  25. Richardson, J. S. and Richardson, D. C. (1988). Science, 240: 1648–1652.PubMedCrossRefGoogle Scholar
  26. Sander, C. and Schneider, R. (1990). Proteins, 8: 3.Google Scholar
  27. Saudek, V., Pastore, A., Castiglione Morelli, M. A., Frank, R., Gausepohl, H., Gibson, T., Weih, F., and Roesch, P. (1990). Protein Engineering. In press.Google Scholar
  28. Schiffer, M. and Edmundson, A. B. (1967). Biophysical J., 7: 121–135.CrossRefGoogle Scholar
  29. Vinson, C. R., Sigler, P. B., and McKnight, S. L. (1989). Science, 246: 911–916.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Toby J. Gibson
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations