DNA Fingerprinting as a Tool of Paternity Testing in Germany

  • C. Rittner
  • U. Schacker
  • P. M. Schneider

Abstract

Soon after the discovery of the ABO blood groups by Landsteiner their forensic application was suggested by Max Richter at the 74. Versammlung Deutscher Naturforscher und Ärzte at Karlsbad (Karlovy Vary) in 1902 [1], Landsteiner’s Nobel lecture “Über individuelle Unterschiede des menschlichen Blutes” in 1930 [2] provided a landmark on the path towards the discovery of so-called hypervariable minisatellite regions of human DNA by Alec Jeffreys in 1985 [3]. Since the individual patterns of any human being seemed to be unique it is well understood that this achievement was immediately welcomed with great enthusiasm by the scientific community and the public opinion. Soon thereafter, however, strong criticism was raised by claiming that such a high degree of individualization may violate human personality rights [4, 5]. In addition, premature and unprofessional application of DNA fingerprinting in Court cases in USA threatened to invalidate the whole procedure [6, 7]. However, the critics have also been criticized [8–10].

Keywords

Migration Electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landsteiner K, Richter M (1903) Über die Verwertbarkeit individueller Blutdifferenzen für die forensische Praxis. Med Beamte 16:85–89Google Scholar
  2. 2.
    Landsteiner K (1931) Individual differences in human blood. Science 73:403–409PubMedCrossRefGoogle Scholar
  3. 3.
    Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73PubMedCrossRefGoogle Scholar
  4. 4.
    Sternberg-Lieben D (1987) “Genetischer Fingerabdruck” und § 81a StPO. NJW 1242–1247Google Scholar
  5. 5.
    Jung H (1989) Zum genetischen Fingerabdruck. Monatsschr Krim 72:103–107Google Scholar
  6. 6.
    Lander ES (1989) DNA fingerprinting on trial. Nature 339:501–505PubMedCrossRefGoogle Scholar
  7. 7.
    Neufeld PJ, Colman N (1990) Wissenschaft im Zeugenstand. Spektr Wissensch 106–116Google Scholar
  8. 8.
    Evett IW, Gill P (1991) A discussion of the robustness of methods for assessing the evidential value of DNA single locus profiles in crime investigations. Electrophoresis 12:226–230PubMedCrossRefGoogle Scholar
  9. 9.
    Devlin B, Risch N, Roeder K (1990) No excess of homozygosity at loci used for DNA fingerprinting. Science 249:1416–1420PubMedCrossRefGoogle Scholar
  10. 10.
    Rittner C, Schacker U, Schneider PM (1989) Zum gegenwärtigen Stand des DNA — Gutachtens (sog. genetischer Fingerabdruck) in der Bundesrepublik Deutschland. Med R 12–15Google Scholar
  11. 11.
    Anonymous (1990) Neufassung der Richtlinien des Bundesgesundheitsamtes für die Erstattung von Blutgruppengutachten. Bundesges Bl 6:264–268Google Scholar
  12. 12.
    Anonymous (1989) Gerichtliche Blutgruppengutachter und Sachverständige für anthropologisch-erbbiologische Vaterschaftsgutachten. Justiz Bl RPL 43:205–215Google Scholar
  13. 13.
    Jeffreys AJ, Wong Z, Wilson V, Patel I, Neumann R, Royle N, Armour JAL (1989) Applications of multilocus and singlelocus probes in forensic medicine. In: Balantyne J, Sensabaugh G, Witkowski J (eds) DNA technology and forensic science. Cold Spring Harbor Press, Cold Spring Harbor (Bunbury report 32)Google Scholar
  14. 14.
    Wong Z, Wilson V, Patel I, Povey S, Jeffreys AJ (1987) Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann Hum Genet 51:269–288PubMedCrossRefGoogle Scholar
  15. 15.
    Smith JC, Anwar R, Riley J, Jenner D, Markham AF (1990) Highly polymorphic minisatellite sequences: allele frequencies and mutation rates for five locus-specific probes in a Caucasian population. J Forensic Sci Soc 30:19–32PubMedCrossRefGoogle Scholar
  16. 16.
    Gill P, Sullivan K, Werrett DJ (1990) The analysis of hypervariable DNA profiles: problems associated with the objective determination of the probability of a match. Hum Genet 85:75–79PubMedCrossRefGoogle Scholar
  17. 17.
    McNally L, Baird M, McElfresh K, Eisenberg A, Balazs I (1990) Increased migration rate observed in DNA from evidentiary material precludes the use of sample mixing to resolve forensic cases of identity. Appl Theor Elect 1:267–272Google Scholar
  18. 18.
    v Eede PH, Henke L, Henke J, de Lange GG (1991) Size calculation of restriction enzyme Hae HI generated gragments detected by probe YNH24 by comparison of data from two laboratories: the generation of fragment size frequencies. Forensic Sci Int 49:21–31PubMedCrossRefGoogle Scholar
  19. 19.
    Schneider PM, Fimmers R, Woodroffe S, Werrett DJ, Bär W, Brinkmann B, Eriksen B, Jones S, Kloosterman AD, Mevag B, Pascal VL, Rittner C, Schmitter H, Thomson JA, Gill P (1991) Report of a European collaborative exercise comparing DNA typing results using a single locus VNTR probe. Forensic Sci Int 49:1–15PubMedCrossRefGoogle Scholar
  20. 20.
    Jeffreys AJ, Royle NJ, Wilson V, Wong Z (1988) Spontaneous mutation rates to new length alleles at tandem — repetitive hypervariable loci in human DNA. Nature 332:278–281PubMedCrossRefGoogle Scholar
  21. 21.
    Smith JC, Newton CR, Alves A, Anwar R, Jenner D, Markham AF (1990) Highly polymorphic minisatellite DNA probes. Further evaluation for individual identification and paternity testing. J Forensic Sci Soc 30:3–18PubMedCrossRefGoogle Scholar
  22. 22.
    Schacker U, Schneider PM, Holtkamp B, Bohnke E, Fimmers R, Sonneborn HH, Rittner C (1990) Isolation of the DNA minisatellite probe MZ 1.3 and its application to DNA ‘fingerprinting’ analysis. Forensic Sci Int 44:209–224PubMedCrossRefGoogle Scholar
  23. 23.
    Ali S, Müller CR, Epplen JT (1986) DNA fingerprinting by oligonucleotide probes specific for simple repeats. Hum Genet 74:239–243PubMedCrossRefGoogle Scholar
  24. 24.
    Nürnberg P, Roewer L, Neitzel H, Sperling K, Pöpperl A, Hundrieser J, Pöche H, Epplen C, Zischler H, Epplen JT (1989) DNA fingerprinting with the oligonucleotide probe (CAC)5/(GTG)5: somatic stability and germline mutation. Hum Genet 84:75–78PubMedCrossRefGoogle Scholar
  25. 25.
    Schneider PM, Schacker U, Braunbeck K, Breidbach T, Rittner G, Holtkamp B, Rittner C (1990) Minisatellite DNA probe MZ 1.3: application in paternity testing and estimate of the number of genetic loci. Adv Forensic Haemogenet 3:130–132Google Scholar
  26. 26.
    Holtkamp B, Bohnke E, Schacker U, Sonnebom HH (1990) Nonisotopic DNA fingerprint analysis with the minisatellite probe MZ 1.3. Adv Forensic Haemogenet 3:133–135Google Scholar
  27. 27.
    Helminen P, Ehnholm C, Lokki M-L, Jeffreys AJ, Peltonen L (1988) Application of DNA “fingerprinting” to paternity determinations. Lancet 574–576Google Scholar
  28. 28.
    Neugebauer M, Willems J, Baur MP (1984) Analysis of multilocus pedigree data by computer. In: Albert ED, Baur, Mayr WR (eds) Histocompatibility testing 1984. pp 52–58Google Scholar
  29. 29.
    Rittner C, Schacker U, Schneider PM (1990) DNA polymorphisms in paternity testing: the use of minisatellite probe MZ 1.3 in incest, deficiency, antenatal and postmortem cases. In: Proceedings of the 1st International Symposium on Advances in Legal Medicine, Oct 11–15, Kanazawa/Japan (in press)Google Scholar
  30. 30.
    Rittner C, Schacker U, Rittner G, Schneider PM (1989) DNA polymorphisms in paternity testing: chances, risks, and strategies. Biotest Bull 4:27–33Google Scholar
  31. 31.
    Rittner C, Schacker U, Mattem R, Müntefering H, Rittner G, Schneider PM (1989) Vaterschaftsnachweis an 10 bis 11 Wochen altem Foeten nach Abort mit Hilfe der Mini-satellitensonde MZ 1.3. HAIMA 4:9–12Google Scholar
  32. 32.
    Henke L, Paas H, Hoffmann K, Henke J (1990) Zum Einsatz von DNA-Polymorphismen in der Abstammungsbegutachtung. Z Rechtsmed 103:235–248PubMedGoogle Scholar
  33. 33.
    Anonymous (1989) DNA-Resolution der Deutschen Gesellschaft für Rechtsmedizin. Inf Dtsch Ges Rechtsmed 4:564–565Google Scholar
  34. 34.
    Lynch M (1988) Estimation of relatedness by DNA fingerprinting. Mol Biol Evol 5:584–599PubMedGoogle Scholar
  35. 35.
    Gjertson DW, Mickey MR, Hopfield J, Takenouchi T, Terasaki PI (1988) Calculation of probability of paternity using DNA sequences. Am J Hum Genet 43:860–869PubMedGoogle Scholar
  36. 36.
    Evett IW, Werrett DJ, Buckleton JS (1989) Paternity calculations from DNA multi-locus profiles. J Forensic Sci Soc 29:249–254PubMedCrossRefGoogle Scholar
  37. 37.
    Evett IW, Buckleton JS (1989) Some aspects of the Bayesian approach to evidence evaluation. J Forensic Sci Soc 29:317–324CrossRefGoogle Scholar
  38. 38.
    Morris JW, Sanda AI, Glassberg J (1989) Biostatistical evaluation of evidence from continuous allele frequency distribution deoxyribonucleic acid (DNA) probes in reference to disputed paternity and identity. J Forensic Sci 34:1311–1317PubMedGoogle Scholar
  39. 39.
    Brookfield JFY (1990) Analysis of DNA fingerprinting data in cases of disputed paternity. Presentation at the International Conference of Forensic Statistics, University of Edinburgh, Apr 2, 1990Google Scholar
  40. 40.
    Fimmers R, Epplen JT, Schneider PM, Baur MP (1990) Likelihood calculations in paternity testing on the bases of DNA-fingerprints. Adv Forensic Haemogenet 3:14–16Google Scholar
  41. 41.
    Hummel K, Fukshansky N (1990) Biostatistical approaches using minisatellite DNA patterns in paternity cases (mother-child-putative-father trios). Adv Forensic Haemogenet 3:17–22Google Scholar
  42. 42.
    Elbel H, Sellier K (1955) Beitrag zum “positiven” Vaterschaftsnachweis mit den bekannten Blutgruppensystemen. Dtsch Z Ger Med 44:196–203CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • C. Rittner
  • U. Schacker
  • P. M. Schneider
    • 1
  1. 1.Institut für RechtsmedizinJohannes Gutenberg-UniversitätMainz 1Germany

Personalised recommendations